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I n t r o d u c t i o n  

In this paper we study modular forms on Fuchsian groups of the first kind. 
Our original motivation was to find an analog of Fourier coefficients for a 
modular form on a compact surface F \ J f ,  where 

~,~4~ = {zeG, I m z > 0 }  

is the upper half-plane and F is a discrete cocompact subgroup of SL(2,N) 
acting by fractional linear transformations. We demonstrate that in this case 
the periods over closed geodesics play a role somewhat similar to that of Fou- 
rier coefficients of modular forms on SL(2,Z) and its congruence subgroups. 
More specifically, those periods uniquely determine a modular form (Theo- 
rem 2). This result is valid for cusp forms on any Fuchsian group of the first 
kind with or without cusps and is closely related to the study of relative Poin- 
car6 series associated to closed geodesics. For each integer k > 2  and each clo- 
sed geodesic [7o] we define special cusp forms of weight 2k, called relative 
Poincar6 series Ok, t~ol and prove that they generate the whole space S2k(F ) of 
cusp forms (Theorem 1). In w 3 we give an expression for periods of a relative 
Poincar6 series over closed geodesics in purely geometrical terms through the 
intersection of the corresponding geodesics (Theorem 3). An application of 
Theorems 1 and 3 to arithmetic subgroups of SL(2,1R) gives two natural ra- 
tional structures o n  S2k(l N) (Theorem 4). 

The relative Poincar6 series have been studied for general F by Petersson 
[18, 19] and Hejhal [5] (g>2). Wolpert [23] gives a basis of S4(F ) for g>2.  
For SL(2, TZ) the relative Poincar6 series have been studied by Zagier [25], 
Kohnen [8], Kohnen and Zagier [9], and Kramer [13]. A related problem of 
constructing cusp forms of weight two associated to closed geodesics has been 
treated by Kudla and Millson in [143. In connection with the problem of 
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choosing spanning sets for S2k(F) from Poincar6 series (not relative Poincar6 
series) we should mention Hejhal [5] and Kra [11]. 

The essential difference between all the earlier work and our approach lies 
in the use of qualitative (geometrical and dynamical) methods based on the 
representation of a cusp form as a function on the unit tangent bundle of 
F \ ~ .  A very general theorem of Livshitz [16] and a theorem of Guillemin 
and Kazhdan [4] play the key role in our considerations. 

This paper contains the results of the first three chapters of my Ph.D. thesis 
[7]. I want to thank my adviser, Don Zagier, for all his help and advice, and J. 
Bernstein and S. Wolpert for discussions from which I profited a great deal 
and also for their enthusiasm and encouragement for my work. The results of 
this paper have been announced in [6]. 

w 1. Relative Poincar6 series 

Let F be a Fuchsian group of the first kind acting on the upper half-plane ~ ,  
i.e. a discrete subgroup of SL(2,N) with vo l (F \ J t f )<  oo; k > 2  be an integer; 
S2k(F ) be the space of all cusp forms of weight 2 k on F. All relevant definitions 
and properties of cusp forms can be found in [20, 15, 21]. We shall use the 

following notations: for z = x + i y ~ V f  and ~ = ( ~  bd)~SL(2,1R ) j (~,z)=cz+d,  
(f[2k CO(z)= f(~z) . j (a,z)  2k 

The following proposition describes a general way of obtaining cusp forms 
on F, 

Proposition 1. Let F o be a subgroup of F and let f (z) be a function, holomorphic 
on 3r and satisfying 

f l 2 k T = f  for all 7~Fo (1.1) 

~ If(z)l (Im z)kdV< oo (1.2) 
ro\a~ 

dxdy 
where d V -  . Then y2 

i) The series F(z)= (f[2kT)(Z), called the relative PoincarO series as- 
7~ro\r 

sociated to the function f, converges absolutely on ~ ,  uniformly on compact sets; 

ii) F(z)~S2k(F ). 

Remark. It is easy to see that F(z) is well defined, i.e. it does not depend on the 
choice of representatives of Fo\F, and (1.2) does not depend on the choice of 
the fundamental domain for F 0. 

The proof is a standard complex variable argument (cf. [12], Ch. 1, w 

Example. Let To=(~ bd) be a hyperbolic (Itr Tol> 2) element in F. 7o is called 

primitive if there is no element 71~F such that 7o=7~ for an integer n > l .  If c 
4=0 7o has two hyperbolic fixed points on the real axis, one repulsive (Wl) and 
the other attractive (w2). The oriented geodesic C(70) on ~ '  from w 1 to w 2 is 
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called the axis of "~o and clearly is (7o>-invariant. Let Q ~ o ( z ) = c z Z + ( d - a ) z - b  
be a quadratic function havings its zeros at w 1 and w 2 and Do=Disc(Q~o) 
=(tr70)2-4.  If c=0,  then Q~o(Z) becomes a linear function and C(70) is paral- 
lel to the imaginary axis. 

Let f(z)=Q~ok(z) and Fo=(7o>. (1.1) follows from the equality Q~o(7O z) 
=Q~o(z)j 2(7o,z ). For any c~eSL(2,I() and any quadratic function Q(z) put 
(Qoe)(z)=Q(c(z)j(e,z) 2. Notice that Q~.oOC~=Q~_,.7o.~. Also we have 
]Q.~k(o: Z)] (lm c~ z) k = [(Qvo ~ c0- k (Z)[ (Im z) k and Q~k[2 k O~ = (Q~o o c O- k. In order to ver- 
ify (1.2) we make the "canonical" change of variables by means of a matrix 
ReSL(2 ,N)  which transforms the oriented imaginary axis [0, ioo] into C(7o). (; 0) 
Then R - l - 7 o . R =  e_l with e=�89 if t r7o>0 and e=�89 

-1//Do) if t r7o<0,  (Q~ooR)(z)=(-sgntrTo)t/D-o z and the integral over the 
fundamental domain for ( R -  1.70' R>, 3o-- { z e ~ l l  < Izl < ~2} converges ob- 
viously for k>2.  Thus we obtain a cusp form for each hyperbolic element 
7o~F, the following normalization of which we denote by 

Ok~.o(Z)=D~-�89 ~ - l [ 2 k - 2 ~ - ~ ' 2 k - 2 "  2 (Q~o~ �9 (1.3) 
' \ k - l ]  ~e<7o>\F 

The following properties of the relative Poincar6 series are proved by a 
straightforward calculation. 

Proposition 2. 
i) I f  7o and ~fl are conjugate in F (we shall denote this by Y0~71) ,  then 

0~,~o(Z)= 0k,~,(z); 

k-10k,,zo(Z), where c~, = Qrg(z)/Q~o(z). ii) For any integer n, Ok,~ = n.~,  

Thus, the relative Poincar6 series (1.3) are actually defined on conjugacy 
classes of hyperbolic elements and it is sufficient to consider them only for 
primitive hyperbolic elements. We denote by [7o] the conjugacy class of the 
hyperbolic element 7o in F. Since conjugacy classes of primitive hyperbolic 
elements of F are in one-to-one correspondence with oriented (primitive) closed 
geodesics on F \ ~ ,  we shall usually denote closed geodesics also by [70] and 
the relative Poincar6 series associated to them by Ok,fTol(Z). The finiteness of the 
number of conjugacy classes of hyperbolic elements with a given trace ("class 
number") interpreted as the number of closed geodesics of given length (see 
[17]), follows immediately from this representation. 

The space S2k(F ) is a finite dimensional complex Hilbert space with respect 
to the Petersson scalar product 

( f i g ) =  ~ f (z )g(z)Y 2kdV. 
r \ a f  

Definition. For each hyperbolic element 7oeF and each geSzk(F), the integral 

yOZO 
rk(g, 7o)= ~ g(z)Q~o~(z)dz (1.4) 

Z0 

is called the period of g over the closed geodesic associated to Yo. 
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?oZo 

The integral ~ g(z)Q~ol(z)dz does not depend on the choice of the point 
ZO 

z o and the path from z o to ?oZo . This follows from the fact that the 
differential form g(z)Qkyol(z)dz is holomorphic on ~ and (7o)-invariant. 
Thus rk(g, 7o ) is well-defined. It is convenient, however, to choose zo~C(7o) 
and to integrate along the geodesic C(7o)- The following result first appeared 
in [5] w 

Proposition 3. For any g(z)~S2k(F ) and any hyperbolic element 7o~F, 

(g,  0k, ~o) = rk(g, ~o). 

A proof can be found in [8] and is based on the following observation. For 
F(z)= ~ (f[v)(z), the relative Poincar6 series associated to f satisfying the 

~ero\F 

hypotheses of Proposition 1 and any g~S2k(F ) w e  have (g, F )  

= ~ g(z)f(z)yZkdV. Then one uses the same change of variables as in the 
ro\,~ 

Example and reduces the proof to a routine computation. 
According to Borel [1] (see also [2]), cusp forms may be interpreted as 

functions on F\SL(2,N) ,  which can be identified with the unit tangent bundle 
SM to the surface 1 M = F \ ~ .  We shall describe this interpretation in a con- 
venient coordinate form. The unit tangent bundle to ~ ,  So~,, may be parame- 
trized by local coordinates (z, ~), where z ~ ,  ~ C ,  [~] = I m  z since the metric on 
each fiber is induced by the hyperbolic metric on ~ .  The second coordinate 
may be regarded as a complex-valued function on S~ .  For any ~,~F, (dT)~ 
- - j - 2 ( 7  , Z)~(d~/ is the differential of 7) and thus for any f(z)~S2k(F ) the function 

f (z)  ~' is invariant under F, and therefore is a well-defined function on SM. For 
the same reason f(z)~k-1 dz is a well-defined differential form on SM. Now we 
can give a geometrical interpretation of the periods of f (z)  over closed geo- 
desics (1.4). The arc (Zo,7o Zo) of the geodesic C(7o) in ~ becomes the closed 
geodesic [~o] in M. We can lift [70] into SM by z ~ ( z , 0 ,  where ~ is the tan- 
gent vector to C(yo) at the point z of hyperbolic length 1. We shall use the 
same notation [7o] for the geodesic lifted to SM. Consider the geodesic flow 
{Or} on SM. More precisely, each point v=(z, O s S M  defines a geodesic on M, 
closed or not, which is lifted to SM by the standard lifting z ~ (z, ~) described 
above. Ot v=(zt,~t) is the point on the same geodesic such that the hyperbolic 
length of the arc(z, zt) equals t. {q/} can be regarded as a motion with unit 
speed along geodesics. The closed geodesics become periodic orbits of {or}. 

Proposition 4. Let f(z)~S2k(F) and 7o~F be a primitive hyperbolic element, [70] 
the closed geodesic on SM corresponding to the conjugacy class of 70. Then 

k--1 

f (z)  ~k dt = ~ f(z) ~k -1 dz = ( - sgn(tr 7o)) k-1 Do ~ -  rk(f ' 7o), 
lyol [vo] 

where t is the "time", or the parameter of the geodesic flow and dr=d(  
]//dx z + dy 2 

Y 

' If  F has elliptic elements, M is not  a smooth  surface, bu t  a so-called orbifold 
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/n h\ 
Proof. Let 7o = ~; d ) E F  and (z, 0eC(7o).  Then Q ~ o ( Z ) = c z Z + ( d - a ) z - b = c ( z  

- w  1)(z-w2).  An elementary geometrical argument  shows that A r g (  
=ArgQ~o(Z ) if t r T o < 0  and A r g ( = A r g Q ~ o ( Z ) + n  if t rTo>0 .  Let  l I denote the 
usual Euclidean norm on 112. Then I ( l = y  and e~o(Z)=lcllz-wdlz-w21 
=]c[ " y - [ w 2 - w l l = l / D o o  [(I. Finally, we obtain Q~o(z )= - sgn ( t r  7o)] /Do (. Tak- 
ing as a lift of [70] to ~ f  the segment between z o and 7o zo we obtain the right 
equality. The left equality follows from the formula d z = ( d ( = ( d t .  [] 

w 2. Periods of cusp forms and the geodesic flow 

In this section we shall prove the following theorem. 

Theorem 1. 

i) The relative Poincar~ series Ok,E~ol for conjugacy classes of primitive hyper- 
bolic elements [7o] of F generate the whole space S2k(F). 

ii) Suppose, in addition, that F is symmetric, i.e. 

and let 

0 + - -  Ok'[y~ -[- 0k,[%] and 0~,t~ol- Ok'E~~ Ok, t~al 
k, ~ol -- 2 2 i 

Then each of the families of the cusp forms {0k+trol} and {0g, t~ol} generates Szk(F ). 

By Proposi t ion 3, Theorem 1 follows immediately from the following state- 
ment. 

Theorem 2. 

i) I f  the periods of a cusp form f~Szk(F) over all closed geodesics are equal 
to zero, then f ( z ) = 0 .  

ii) I f  F is symmetric and rk(f, Vo)+rk(f To)=O (or rk(f, 70)--rk(f, 7'o)=O) for all 
primitive hyperbolic elements 7oeF, then f ( z ) = 0 .  

Proof of Theorem2. (i) Let  f(z)eS2k(F) such that  rk(f, 7o)=0  for all primitive 
hyperbolic elements 70eF. The function 4~=f(z)~  k on SM is smooth  and, ac- 
cording to Proposi t ion 4, has zero integrals over all closed geodesics. We shall 
use now the result of A. Livshitz 2 [16] which we formulate in a slightly modi- 
fied form to include the possible presence of cusps. 

Theorem. Let F be a discrete subgroup of SL(2 ,~ )  with vol (F \~ ,~)<  oo, M 
= F \ ~ , ,  and let {0 t} be the geodesic flow acting on SM. Let f be a smooth 

function on SM whose integrals over all periodic orbits of {or} are equal to zero. 
Then there exists a function F on SM satisfying a Lipschitz condition and differ- 

2 We use the natural English spelling of his name instead of a phoenetic transliteration, Liv~ic, 
which appeared in the translations of his papers from Russian into English 
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dF , ~ = d  
entiable in the direction of the geodesic flow and such that ~ = f ,  where dt 

is the operator of differentiation along the orbits of the flow {~gt}. 

The original proof for geodesic flows on compact manifolds works with 
minor alterations for manifolds with cusps (see [7] Appendix). 

By Livshitz's theorem there exists a function F satisfying a Lipschitz con- 
dition and such that 

d 
F = f ( z )  ~k. (2.1) 

Let us consider Lz(SM) with the scalar product 

(F,G)= I F.GdVdO, 
S M  

d v - d x d y  where ),2 and dVdO is the SL(2,~)-invariant volume on SM(O= Arg 0. 

Lemma. Let F be the function obtained from Livshitz's theorem for qS=f(z)~ k, 
where f(z)eS2k(F). Then FeLZ(SM). 

Proof. If we prove that F is uniformly bounded on SM, then, using the assump- 
tion v o l ( F \ ~ ) < o o  which implies that vol(SM)<oo, we get FeL2(SM). If 
F\~cf is compact, then the boundedness follows from a Lipschitz condition. 
Suppose that F \ J f  has cusps. Since the number of cusps is finite, it is enough 
to prove that F is bounded at each cusp a. Let ReSL(2,~) be such that R(m) 
=a ,  and let ~(z)=(fJ2kR)(z)=f(Rz)j(R,z ) 2k.~b(z) is invariant under 

( (~ hl ) )=R- 'F~R'whereF.={7eF, 'a=a' ,h>O, andtheref~176 

tier development at oo: ~(z)= ~ a.e2="iz/h; ao=O since f is a cusp form. Let 1 
n--1 

be the imaginary axis, then R(I) is the geodesic, going to the cusp a. Fix 
veR(I), then 

s dF 
F(~bsv)-F(v)=5~p(~k'v)dt since 05 = ~ - .  

0 

Notice that for some constant C 1 

i (o(~Otv)dt = i f(wt)tl 'dt= i ~(z,)~dt 

_<- S [q~(z)[ yk- 1 dy < C1, 
yo 

dv 2r~y 

since on I, ~t=iY, dr= -~ , [~(z ) [=0(e -~- )  and therefore the last integral con- 
Y 

verges. Therefore, there exists a constant C 2 such that for 0 < s < o o ,  
IFOP ~ v)l < C2. 

The finiteness of the volume implies that for any e > 0  there exists a neigh- 
borhood of a in M, U(a)~v such that ((z,R(I))<e for all zeU(a),  where { is 

the hyperbolic metric on M. Let U(a)=S(U(a))cSM, R(I) be the lift of R(I) 
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onto SM, and s be the metric in SM induced by the hyperbolic metric on 

M(ds2=dl2+d02). Then for all u=(z,()eU(a) we have s(u,R(1))<e+~ and 
since F satisfies a Lipschitz condition, we have IF(u)1< C for some constant 
C. D 

A standard Fourier analysis argument shows that we can decompose F in 

Lz(SM) as follows: F(z , ( )= ~ Fro, FmeH m, where H,,cL2(SM) are defined as 
- - o o  

follows" Hm = {G(z, ()~L2(SM)IG(z, ()--g(z)("}. Notice that g(z) is not supposed 
to be holomorphic on ~ .  

Since the volume form dVd(a is invariant for the geodesic flow {Or}, the 
d 

differential operator N=dt '  defined on a dense set of functions differentiable 

along the orbits of the geodesic flow {~pt}, is skew-self-adjoint: ~ * = - ~ ,  or 
equivalently, ( @ f , g ) = ( f , - ~ g ) .  A direct calculation shows that 9 = ~  + 

[~g �9 -1 t ~m+ l and ~ - G  + 9 -  and for G=g(z)(meHm, 9 + G  = t~zz- lmy g(z)! eHm+ 1 

=y2 ~" leHm_l,  and also ( 9 + ) * = - 9 - ;  ( ~ - ) * = - 9  § Thus we can re- 

write (2.1) as follows 

9 Fk+l+~+Fk_l=f(z)~ k (2.2) 

F / + I + 9 + F / _ t = 0  for all i~=k. 

A theorem of Guillemin and Kazhdan ([4], Theorem 3.6) implies that F/=0 for 
i>k and i N - k ,  so the first equation has the form @+Fk_l=f(z)~k.  Then 

9 -  9 + V k _ , = 9  ( f ( z ) ( k ) = y  2 (~f(z)) (k-'----O since f (z )  is holomorphic. We 

have O-=(ffk_l, 9-  9+ Fk_a)=--(9+ fk_l, ~+ Fk_l)=--l[9+ fk_lll 2. There- 
fore ~+  F k 1 = 0  and f ( z )=0 .  This completes the proof of statement (i). 

(ii) Let f(z)CSzk(F) be such that rk(f, 7o)+ rk(f, 70) = 0  for all primitive hyper- 
bolic elements 7oeF. Then we have 

f(z)~kdt+ ~ f(z)~ kdt=O. 
['~o1 [y6l 

Notice that C(yo) and C(yo) on ~ are symmetric with respect to the imaginary 
axis and have the opposite orientation. Therefore after the change of variables 
z = - urn, we have ~ = - & = - y2 rl- 1 and 

f (z)(kdt=(--1) k ~ /(--v~)(Xmw)Zkr/ kdt. 
[~'61 [~'ol 

Therefore for all closed geodesics [70] on SM we have 

f(z) (k T f(---~)YZk ~-k at = 0  
[yol 

w h e r e  f(z)(keHk a n d  f(--~)y2k ~ kSH_R" 
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By Livshitz's Theorem there exists a function F on SM such that 

d 
F = f (z) ~k -T- f (---2) y2k (-- k. (2.3) 

The same argument as in Lemma shows that FeL2(SM), and we can rewrite 
(2.3) as follows: 

Fk+ ~ + @+ Fk_ ~= f (z)~ k 

~ - F k + l + ~ + F  k_~=T_f(__-2) y2k~ k 

~ - F i + l + ~ + F i _ _ l = 0  for all i=i:k,-k.  

Theorem 3.6 ([4]) implies again that F/=0 for i>k  and i < - k .  Therefore, the 
same arguments as in (i) can be carried out, and we get f ( z )=0 .  [] 

S. Katok 

w 3. Periods of relative Poincar6 series 

Throughout this section F is supposed to be symmetric (see Theorem 1 (ii)). 

Theorem 3. Let 7o and 71 be two primitive hyperbolic elements and Zi= - s g n t r  yi 
for i=0,  1. Then 

rk(Ok,t~ol, 71) --rk(Ok,t~6~, 7'1) 

k_l  k_l  i i Z  p _ (cos0p), (3.1) = D ~  D~- (Z~  \ k - l ]  p~[,o]~[,d 

where the summation is taken over all intersection points p of [70] and [71] on 
F \ •  (counted with multiplicities); if [7o] = [71] the summation is taken over all 
points of the self-intersection of the geodesic [~o]- Here Op=Op(yo,70 is the 
angle between the oriented geodesics [7o] and [7~] at their intersection point p; 
#p=sgn(sinOp); Pk 1 is the ( k - l )  st Legendre polynomial. 

Remarks. 1. For k=2 ,  formula (3.1) agrees with the cosine formula of [24], (cf. 
also [5], Theorem 5). 

2. D. Kazhdan suggested that formula (3.1) may possibly be obtained by 
using Eichler cohomology. 

Proof Let us assume first that 71~7o, 71~7o 1. Let Fo=(7o) ,  F~=(?~),  K1 

=D~- �89  -1 ( 2 k - 2 ~  -1 .2 2k-2, then Ok,~,ol=K 1 �9 ~ (Q,ooT)-k(z). 
\ k -  1] ~ro\r 

Lemma 1. Let 7o,71eF be two primitive hyperbolic elements, such that 71,,~7o, 
71,~7o 1 in F; let {7,eF} be a complete set of representatives of Fo\F/F 1. Then 
{7~7'~, meZ} forms a complete set of representatives of Fo\F. 

The proof is straightforward and we shall omit it. 
Using Lemma 1 and interchanging the summation and the integration 

(which is legitimate since the relative Poincar6 series converges absolutely) we 
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have 
"~lgO 

?'k(Ok,t)'o]'~;1) = S ( K l '  2 (Q~ok]7)(z)Q~i(z)) dz 
zo ~Fo\F 

"/lZO 
~n k -  =K~- f ~ Z (O~ok[TI ; )(z)O,, '(z)dz 

zo 7cFo\r/rl ne~g 

=Kt" 2 ~ (Q,ooy)-k(z)Qk,, a(z)dz. 
"~Fo\F/F1 C(71) 

We obtain the corresponding formula for rk(Ok.t~;,1,y't). Making a change of vari- 
ables z ~ - z  and using that (Qr~oT')(z)=-(Q~ooT)(-z) and Q~i(z)=-QT~(-z), 
we obtain the formula 

rk(Ok,E~ol, Tfl_rk(Ok,t~6~,7,0=K. ~ ~ Q ~ ' ( z ) d z  (3.2) 
~ro\r/r, c(~,) (Q~o~ ' 

where the integration is over a circle C(?q)~ (-C(7])). 
It follows from the Residue Theorem that the double cosets F o 7F~eFo\F/F ~ 

which contribute non-zero terms to the sum (3.2) have the property that 
7 -1 C(?o) intersects C(7~) on ~ ,  and those are in 1 - 1  correspondence with 
intersection points of [7o] and [71] on F \ Y f  counted with multiplicities. Since 
[7(] and [71] may have only finitely many intersection points, the sum in (3.2) 
is in fact finite. 

After the "canonical" change of variables R (cf. Example, w 1), transforming 
the imaginary axis into C(71), each term in (3.2) can be rewritten in the form 

Qk~t(z)dZ=zk_l, DI~--R-1 i~f zk - ldz  

c(~,) (Q~oo;;)k(z) -i~ (Q~o~176 

The next lemma gives an expression for such an integral. 

Lemma 2. Suppose k>= 1 and A,B, Cell( with D = B 2 - 4 A C > O .  Then 

2~i2k_ t ok-X 
iv zk - ldz  ( - sgnA)  (k-1)~ ?~B k - I ( B - 4 A C )  ~ 

(Az 2 - . - iv  + B z + C) k 0 

if AC<O 

if AC>O, 

The proof is a simple exercise and we shall omit it. 

We define Pk 1 ( ~ )  _ as follows 

2 l - -  ~ B k _ I ( B - 4 A C ) - ' = D  2(--1)k--a(k--1)lPk_l 

(3.3) 

and prove by induction that Pk-1 (t) satisfies the following recurrent formula for 
k = l , 2  .. . .  

t2-- t  
Pk(t)=tPk_l(t)+-~-Pk'(t)  with Po(t)= 1 

which identifies Pk-1(t) a s  the (k -1)  st Legendre polynomial (see [10], p. 724). 
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To each of the double cosets FoyF~eFo\F/F ~ which contr ibute  non-zero 
terms to the sum (3.2) we shall apply  L e m m a 2  with A z Z W B z + C = Q % ( z ) ,  
where ~ o = R - 1 . 7 - 1 . 7 o . 7 . R .  An or ienta t ion on C(~o) is given by P(7o) 
=sgn( t r  7o 'A)  and is clockwise if # (~o)>0  and counterclockwise if P(7o)<0.  
Let Op be the angle between the oriented geodesic C(~o) and the positive direc- 
tion of the imaginary  axis (i.e. C(R-~.  7t"R). Then ~(~o)=sgn(s in  Op)=pp, An 

B 
easy geometr ic  a rgument  shows that  c o s 0 p = ( - s g n t r T o ) - 7 ~  ~. Since Pk is even 

V r ,  
for even k and odd for odd k, we have ( )=/-sgntrto/k l/COS0p/ 

y -- 

T h u s ,  since the linear fractional t ransformat ion  R is conformal ,  each non-zero 
term in (3.2) can be rewritten in purely geometr ical  terms (note that  D =Do):  

Qk-l(z)d z k ~-1 
= 2 7r i Do2  O ~ -  (Z 0 Z1) k - ' -  Zo 1 #p Pk-1 (cos 0p), 

c~,~ (Q~o o ~)k(z) 

which implies formula  (3.1). 
Let  us now consider the case when to is conjugate in F to t~ or to 7~ -1. 

Since Ok, tTol depends only on the conjugacy class of to and since Ok,t,erq= 
(--1)kOk, tr,l, it is sufficient to consider the case t~ = t o .  In this case we have F o 
= F  1 and therefore instead of L e m m a  1 we need the following l emma:  

L e m m a  3. 

7o~7o~  3 and let a~F be such that a - ~ . t . a = t o ~ ;  let { 7 ~ F }  be a complete set 
of representatives of Fo\F/F o containing e and a. Then { t ~ ' ~ ,  mEZ,  7~ 
#e,  a} w e w a  forms a complete set of representatives of Fo\F. 

ii) Let ?o be a primitive hyperbolic element such that 7o~7o~, e = ( ;  01), 

and let {7~eF} be a complete set of representatives of Fo\F/Fo, containing e. 
Then {t~'7~, meTZ, 7 =t=e} ~ e  forms a complete set of representatives of Fo\F. 

The only other  fact we need to get through all the calculations is that  
7ozo dz ~6z6 dz 
~o -~ Q~o(Z) = ~o ~ Q~a(z)' which becomes  obvious after our  "canon ica l "  change 

of variables (see Example,  w l). []  

w Rational  structures on S2k(F ) in the arithmetic case  

Let F be an ar i thmetic  subgroup  of  SL(2,R),  i,e. a group obta ined f rom a 
quaternion algebra over ~ which splits over  IR (see [3], pp. 116-119, and 
[22]). I t  is known that  F can be embedded  in SL(2 ,R)  in a symmetr ic  way so 
that it satisfies the assumpt ion  of Theo rem l(ii). The only other  fact abou t  
ar i thmetic  subgroups  we need is that  traces of  all elements are integers. 

3 The existence of such a ?oeF with 70~?o I is a very special property of F. This may be 
possible only if F contains an elliptic element of order 2 
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Theorem 4. Let F be an arithmetic subgroup of SL(2,]R), and let 7o,71~F be two 
primitive hyperbolic elements. Then (0k+l~o], 0~,[~l])e ~. 

Proof We have 

+�88 i((Ok,[%], Ok,[Tll)--(Ok,[TO] , 0k.[~,]])). (4.1) 

According to Proposition 3 (w 1) and Theorem 3, we have 

k--1 k--1 
�88 Ok,[~d)--(Ok,[~S], Ok,wd))=q'D~-D1 ~ f -  ~ #pPkk-l(cosOp) 

---- --�89 Im (Ok,~vo~, Ok,~,l ), (4.2) 
where q ~ ~. 

Lemma (Wolpert [24]). The following formula gives the expression for the co- 
sine of the angle between the axes of two hyperbolic transformations Sans T at 
their intersection point p: 

- sgn(tr S. tr T)(tr S. tr T -  2 tr ST) 
cos 0 p -  ~ _ 4 . t / ( ~ _ r  T )2_4  

This formula shows that for each PS[70] c~ [71] the numerator of the expression 

for cOS0p is an integer, while the denominator is ~ .  If k is odd, Pk-1 has 
only even powers of cos Op, if k is even, Pk-1 has only odd powers of cos 0p and 
it is clear from (4.2) that we get a rational number in both cases. 

The same argument gives us the rationality of the second term in (4.1), 
which completes the proof. [] 

Formula (4.2) allows us to find bases in S2k(F ) for particular arithmetic 
groups F and small k (cf. Chapter IV of [7]). 

Now we can define two rational subspaces of S2k(F): 

S~k(F)= {f~Szk(ff)l(f,, 0~,[z, ol)ell ~ for all hyperbolic 70eF}, 

S2k(F) = { f  ~SEk(F)[ ( f, O~,t~ol)eff) for all hyperbolic 70eF}. 

0 + Theorems l(ii) and 4 now imply that S~k(F ) is the Q-span of { s and that 

S~k(F ) and SEk(F ) are rational structures on S2k(F) (i.e. Sfk(F)| C-2* SEk(F) ) 

which are dual to one another with respect to the Petersson scalar product. 
Let S~ be the Q-span of {0k, L~ol }. Then S~ is a rational structure on 

SEk(F ) considered as a real vector space. This also follows from Theorems l(ii) 
and 4 and from the fact that Im(0~o, 0~])=0 for any two hyperbolic ~'0, 71eF 
(see (4.2)) which implies S~k c~ i S~k= {0} and S2k~ _-- $2 k+ �9 t" S2k.- 

Remark. As has been pointed out to the author by John Millson, one can 
deduce the existence of a rational structure on S2k(ff) considered as a real 
vector space from Shimura isomorphism between S2R(F) and HI(F,S 2k-2 ]R E) 
(see [21] Chapter 8), and of two rational structures on S2k(F ) considered as a 
complex vector space from Shimura map SEk(F)--~ Hi(F, S 2 k - 2  1~2), which sup- 
posedly coincide with three rational structures described in this paper. 
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