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Abstract. We describe a general method of arithmetic coding of geodesics
on the modular surface based on the study of one-dimensional Gauss-like maps

associated to a two parameter family of continued fractions introduced in [16].

The finite rectangular structure of the attractors of the natural extension maps
and the corresponding “reduction theory” play an essential role. In special

cases, when an (a, b)-expansion admits a so-called “dual”, the coding sequences
are obtained by juxtaposition of the boundary expansions of the fixed points,

and the set of coding sequences is a countable sofic shift. We also prove that

the natural extension maps are Bernoulli shifts and compute the density of the
absolutely continuous invariant measure and the measure-theoretic entropy of

the one-dimensional map.

1. Introduction and background

In [16], the authors studied a new two-parameter family of continued fraction
transformations. These transformations can be defined using the standard gener-
ators T (x) = x + 1, S(x) = −1/x of the modular group SL(2,Z) and considering
fa,b : R̄→ R̄ given by

(1.1) fa,b(x) =





x+ 1 if x < a

− 1
x

if a ≤ x < b

x− 1 if x ≥ b .
Under the assumption that the parameters (a, b) belong to the set

P = {(a, b) | a ≤ 0 ≤ b, b− a ≥ 1, −ab ≤ 1} ,
one can introduce corresponding continued fraction algorithms by using the first
return map of fa,b to the interval [a, b). Equivalently, these so called (a, b)-continued
fractions can be defined using a generalized integral part function:

(1.2) bxea,b =





bx− ac if x < a

0 if a ≤ x < b

dx− be if x ≥ b ,
where bxc denotes the integer part of x and dxe = bxc+ 1.
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A starting point of the theory is the following result [16, Theorem 2.1]: if (a, b) ∈
P, then any irrational number x can be expressed uniquely as an infinite continued
fraction of the form

x = n0 −
1

n1 −
1

n2 −
1
. . .

= bn0, n1, · · · ea,b, (nk 6= 0 for k ≥ 1),

where n0 = bxea,b, x1 = − 1
x−n0

and nk+1 = bxk+1ea,b, xk+1 = − 1
xk−nk

, i.e. the
sequence of partial fractions rk = bn0, n1, . . . , nkea,b converges to x.

It is possible to construct (a, b)-continued fraction expansions for rational num-
bers, too. However, such expansions will terminate after finitely many steps if
b 6= 0. If b = 0, the expansions of rational numbers will end with a tail of 2’s, since
0 = b1, 2, 2, . . . ea,0.

The above family of continued fraction transformations contains three classical
examples: the case a = −1, b = 0 described in [22, 12] gives the “minus” (back-
ward) continued fractions, the case a = −1/2, b = 1/2 gives the “closest-integer”
continued fractions considered first by Hurwitz in [9], and the case a = −1, b = 1
was presented in [19, 14] in connection with a method of coding symbolically the
geodesic flow on the modular surface following Artin’s pioneering work [6] and cor-
responds to the regular “plus” continued fractions with alternating signs of the
digits.

The main object of study in [16] is a two-dimensional realization of the natural
extension map of fa,b, Fa,b : R̄2 \∆→ R̄2 \∆, ∆ = {(x, y) ∈ R̄2|x = y}, defined by

(1.3) Fa,b(x, y) =





(x+ 1, y + 1) if y < a(
− 1
x
,−1

y

)
if a ≤ y < b

(x− 1, y − 1) if y ≥ b .
Here is the main result of that paper:

Theorem 1.1 ([16]). There exists an explicit one-dimensional Lebesgue measure
zero, uncountable set E that lies on the diagonal boundary b = a+ 1 of P such that:

(1) for all (a, b) ∈ P \E the map Fa,b has an attractor Da,b = ∩∞n=0F
n
a,b(R̄2 \∆)

on which Fa,b is essentially bijective.
(2) The set Da,b consists of two (or one, in degenerate cases) connected com-

ponents each having finite rectangular structure, i.e. bounded by non-
decreasing step-functions with a finite number of steps.

(3) Almost every point (x, y) of the plane (x 6= y) is mapped to Da,b after
finitely many iterations of Fa,b.

An essential role in the argument is played by the forward orbits associated to a
and b: to a, the upper orbit Ou(a) (i.e. the orbit of Sa) and the lower orbit O`(a)
(i.e. the orbit of Ta), and to b, the upper orbit Ou(b) (i.e. the orbit of T−1b) and the
lower orbit O`(b) (i.e. the orbit of Sb). It was proved in [16] that if (a, b) ∈ P \ E ,
then fa,b satisfies the finiteness condition, i.e. for both a and b, their upper and
lower orbits are either eventually periodic, or they satisfy the cycle property, i.e.
they meet forming a cycle; more precisely, there exist k1,m1, k2,m2 ≥ 0 s.t.

fm1
a,b (Sa) = fk1a,b(Ta) = ca, (resp., fm2

a,b (T−1b) = fk2a,b(Sb) = cb),
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Figure 1. Attracting domain Da,b for a = − 4
5 , b = 2
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where ca and cb are the ends of the cycles. If the products of transformations
over the upper and lower sides of the cycle are equal, the cycle property is strong,
otherwise, it is weak. In both cases the set La,b of the corresponding values is finite;
ends of the cycles belong to the set La,b if and only if they are equal to 0, i.e. if the
cycle is weak. The structure of the attractor Da,b is explicitly “computed” from
the finite set La,b.

The paper is organized as follows. In Section 2 we give some background infor-
mation about geodesic flows and their representations as special flows over symbolic
dynamical systems, and define the coding map. In Section 3 we describe the reduc-
tion procedure for coding geodesics via (a, b)-continued fractions based on the study
of the attractor of the associated natural extension map, define the corresponding
cross-section set, and introduce the notion of reduced geodesic. In Section 4 we prove
that the first return map to the cross-section corresponds to a shift of the coding
sequence (Theorem 4.1) and, as a consequence, show that (a, b)-continued fractions
satisfy the Tail Property, i.e. two SL(2, Z)-equivalent real numbers have the same
tails in their (a, b)-continued fraction expansions. In Section 5 we introduce a notion
of a dual code and show that if an (a, b)-expansion has a dual (a′, b′)-expansion, then
the coding sequence of a reduced geodesic is obtained by juxtaposition of the (a, b)-
expansion of its attracting endpoint w and the (a′, b′)-expansion of 1/u, where u is
its repelling endpoint. We also prove that if the (a, b)-expansion admits a dual, then
the set of admissible coding sequences is a sofic shift (Theorem 5.8). In Section 6 we
derive formulas for the density of the absolutely continuous invariant measure and
the measure-theoretic entropy of the one-dimensional Gauss-type maps and their
natural extensions. We also prove that the natural extension maps are Bernoulli
shifts. And finally, in Section 7 we apply results of [16] to obtain explicit for-
mulas for invariant measure for the one-dimensional maps for some regions of the
parameter set P .
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2. Geodesic flow on the modular surface and its representation as a
special flow over a symbolic dynamical system

Let H = {z = x + iy : y > 0} be the upper half-plane endowed with the
hyperbolic metric, F = {z ∈ H : |z| ≥ 1, |Re z| ≤ 1

2} be the standard fundamental
region of the modular group PSL(2,Z) = SL(2,Z)/{±I}, and M = PSL(2,Z)\H
be the modular surface. Let SH denote the unit tangent bundle of H. We will use
the coordinates v = (z, ζ) on SH, where z ∈ H, ζ ∈ C, |ζ| = Im (z). The quotient
space PSL(2,Z)\SH can be identified with the unit tangent bundle of M , SM ,
although the structure of the fibered bundle has singularities at the elliptic fixed
points (see [11, §3.6] for details). Recall that geodesics in this model are half-circles
or vertical half-rays. The geodesic flow {ϕ̃t} on H is defined as an R-action on the
unit tangent bundle SH which moves a tangent vector along the geodesic defined by
this vector with unit speed. The geodesic flow {ϕ̃t} on H descents to the geodesic
flow {ϕt} on the factor M via the canonical projection

(2.1) π : SH → SM

of the unit tangent bundles. Geodesics on M are orbits of the geodesic flow {ϕt}.
A cross-section C for the geodesic flow is a subset of the unit tangent bundle

SM visited by (almost) every geodesic infinitely often both in the future and in the
past. In other words, every v ∈ C defines an oriented geodesic γ(v) on M which
will return to C infinitely often. The “ceiling” function g : C → R giving the time
of the first return to C is defined as follows: if v ∈ C and t is the time of the first
return of γ(v) to C, then g(v) = t. The map R : C → C defined by R(v) = ϕg(v)(v)
is called the first return map. Thus {ϕt} can be represented as a special flow on
the space

Cg = {(v, s) : v ∈ C, 0 ≤ s ≤ g(v)},
given by the formula ϕt(v, s) = (v, s+t) with the identification (v, g(v)) = (R(v), 0).
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Figure 2. Geodesic flow is a special flow

Let N be a finite or countable alphabet, N Z = {x = {ni}i∈Z | ni ∈ N} be the
space of all bi-infinite sequences endowed with the Tikhonov (product) topology,

σ : N Z → N Z defined by (σx)i = ni+1

be the left shift map, and Λ ⊂ N Z be a closed σ-invariant subset. Then (Λ, σ)
is called a symbolic dynamical system. There are some important classes of such
dynamical systems. The space (N Z, σ) is called the full shift (or the topological
Bernoulli shift). If the space Λ is given by a set of simple transition rules which
can be described with the help of a matrix consisting of zeros and ones, we say
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can be described with the help of a matrix consisting of zeros and ones, we say
that (Λ, σ) is a one-step topological Markov chain or simply a topological Markov
chain (also called a subshift of finite type). A factor of a topological Markov chain
is called a sofic shift. (See [10, §1.9] for the definitions.)

In order to represent the geodesic flow as a special flow over a symbolic dynamical
system, one needs to choose an appropriate cross-section C and code it, i.e. to find
an appropriate symbolic dynamical system (Λ, σ) and a continuous surjective map
Cod : Λ → C (in some cases the actual domain of Cod is Λ except a finite or
countable set of excluded sequences) defined such that the diagram

Λ σ−−−−→ Λ

Cod

y
yCod

C
R−−−−→ C

is commutative. We can then talk about coding sequences for geodesics defined
up to a shift which corresponds to a return of the geodesic to the cross-section C.
Notice that usually the coding map is not injective but only finite-to-one (see e.g.
[2, §3.2 and §5]).

There are two essentially different methods of coding geodesics on surfaces of
constant negative curvature. The geometric code, with respect to a given funda-
mental region, is obtained by a construction universal for all Fuchsian groups. The
second method is specific for the modular group and is of arithmetic nature: it uses
continued fraction expansions of the end points of the geodesic at infinity and a
so-called reduction theory (see [15, 14] for the three classical cases). Here we will
describe a general method of arithmetic coding via (a, b)-continued fractions that
is based on study of the attractor of the associated natural extension map. This
approach, coupled with ideas of Bowen and Series [7], may be useful for coding of
geodesics on quotients by general Fuchsian groups.

3. The reduction procedure

In what follows we will denote the end points of geodesics on H by u and w,
and whenever we refer to such geodesics, we use (u,w) as their coordinates on R̄2

(u 6= w).
The reduction procedure for coding symbolically the geodesic flow on the mod-

ular surface via continued fraction expansions was presented for the three classical
cases in [14]; for a survey on symbolic dynamics of the geodesic flow see also [15].
Here we describe the reduction procedure for (a, b)-continued fractions and explain
how it can be used for coding purposes.

Let γ be an arbitrary geodesic on H from u to w (irrational end points), and
w = bn0, n1, . . . ea,b. We construct the sequence of real pairs {(uk, wk)} (k ≥ 0)
defined by

(3.1) u0 = u, w0 = w and wk+1 = ST−nkwk , uk+1 = ST−nkuk .

Each geodesic γk from uk to wk is PSL(2,Z)-equivalent to γ by construction. It
is convenient to describe this procedure using the reduction map that combines the
appropriate iterate of the map Fa,b:

Ra,b : R2 \∆→ R2 \∆
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given by the formula Ra,b(u,w) = (ST−nu, ST−nw), where n is the first digit in
the (a, b)-expansion of w. Notice that (uk, wk) = Rka,b(u,w).

Definition 3.1. A geodesic inH from u to w is called (a, b)-reduced if (u,w) ∈ Λa,b,
where

Λa,b = Fa,b(Da,b ∩ {a ≤ w ≤ b}) = S(Da,b ∩ {a ≤ w ≤ b}).
According to Theorem 1.1, for (almost) every geodesic γ from u to w in H,

the above algorithm produces in finitely many steps an (a, b)-reduced geodesic
PSL(2,Z)-equivalent to γ, and an application of this algorithm to an (a, b)-reduced
geodesic produces another (a, b)-reduced geodesic. In other words, there exists a
positive integer ` such that R`a,b(u,w) ∈ Λa,b and Ra,b : Λa,b → Λa,b is bijective
(with the exception of some segments of the boundary of Λa,b and their images).

Let γ be a reduced geodesic with the repelling point u 6= 0 and the attracting
point

(3.2) w = bn0, n1, . . . ea,b.
Then, by successive applications of the map Ra,b, we obtain a sequence of real pairs
{(uk, wk)} (k ≥ 0) (see (3.1) above) such that each geodesic γk from uk to wk is
(a, b)-reduced. Using the bijectivity of the map Ra,b, we extend the sequence (3.2)
to the past to obtain a bi-infinite sequence of integers

(3.3) bγe = b. . . , n−2, n−1, n0, n1, n2, . . . e,
called the coding sequence of γ, as follows. There exists an integer n−1 6= 0 and a real
pair (u−1, w−1) ∈ Λa,b such that ST−n−1w−1 = w = w0 and ST−n−1u−1 = u = u0.
Notice that bw−1ea,b = n−1. By uniqueness of the (a, b)-expansion, we conclude
that w−1 = bn−1, n0, n1, . . . ea,b. Continuing inductively, we define the sequence of
integers n−k and the real pairs (u−k, w−k) ∈ Λa,b (k ≥ 2), where

w−k = bn−k, n−k+1, n−k+2, . . . ea,b
by ST−n−kw−k = w−(k−1) and ST−n−ku−k = u−(k−1). We also associate to γ a
bi-infinite sequence of (a, b)-reduced geodesics

(3.4) (. . . , γ−2, γ−1, γ0, γ1, γ2, . . . ),

where γk is the geodesic from uk to wk.

Remark 3.2. Notice that all “intermediate” geodesics T−sγk (1 ≤ s ≤ nk) obtained
from γk using the map Fa,b are not (a, b)-reduced.

Proposition 3.3. A formal minus continued fraction comprised from the digits of
the “past” of (3.3),

n−1 −
1

n−2 −
1

n−3 −
1

. . .

= (n−1, n−2, n−3, . . . )

converges to 1/u.

Proof. By [13, Lemma 1.1], it will be sufficient to check that |n−k| = 1 implies
n−k · n−(k+1) < 0, i.e. the digit 1 must be followed by a negative integer and the
digit −1 must be followed by a positive integer. We use the following properties of
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the set Λa,b that can be derived from our knowledge of the shape of the set Da,b

determined in [16, Lemmas 5.6, 5.10, 5.11]. The upper part of Λa,b is contained in
the region

(3.5)
[−1, 0]×

[
−1
a
,+∞

]
∪ [0, 1]×

[
− 1
b− 1

,+∞
]

if b < 1

[−1, 0]×
[
−1
a
,+∞

]
if b ≥ 1.

The lower part of Λa,b is contained in the region

(3.6)
[−1, 0]×

[
−∞,− 1

a+ 1

]
∪ [0, 1]×

[
−∞,−1

b

]
if a > −1

[0, 1]×
[
−∞,−1

b

]
if a ≤ −1.

Recall that (u−(k+1), w−(k+1)) = (Tn−(k+1)Su−k, Tn−(k+1)Sw−k) for an appropriate
integer n−(k+1) 6= 0. Suppose n−k = 1. Then w−k > 0. If u−k < 0, then Su−k > 0
and Sw−k < 0, and it takes a negative power of T to bring it back to (the lower
component of) Λa,b, i.e. n−(k+1) < 0. The case u−k > 0, according to (3.5), can
only take place if b ≤ 1. In this case, −1/(b−1) ≤ w−k < b+ 1, which is equivalent
to b > 1, a contradiction. Therefore n−k = 1 implies n−(k+1) < 0. A similar
argument shows that n−k = −1 implies n−(k+1) > 0. We conclude that the formal
minus continued fraction converges. In order to prove that the limit is equal to 1/u
we use the recursive definition of the digits n−1, n−2, . . . , to write

1
u

= n−1 − u−1 = n−1 −
1

n−2 − u−2
= · · · = (n−1, n−2, . . . , n−k − u−k) = · · · ,

and the conclusion follows since the formal minus continued fraction converges. �

Let
C = {z ∈ H | |z| = 1, −1 ≤ Re z ≤ 1}

be the upper-half of the unit circle, and

C− = {z ∈ H | |z + 1| = 1, −1
2
≤ Re z ≤ 0}

and

C+ = {z ∈ H | |z − 1| = 1, 0 ≤ Re z ≤ 1
2
}

be the images of the two vertical boundary components of the fundamental region
F under S (see Figure 3).

Proposition 3.4. Every (a, b)-reduced geodesic either intersects C or both curves
C− and C+.

Proof. If a, b are such that −1 ≤ a ≤ 0 and 0 ≤ b ≤ 1, then by properties (3.5) and
(3.6) of the set Λa,b, if (u,w) ∈ Λa,b, then −1 ≤ u ≤ 1 and w ≥ − 1

a or w ≤ −1
b ,

and hence all (a, b)-reduced geodesics intersect C. For the case b > 1 we have: if
−1 < u < 0, then either w > − 1

a > b > 1 or w < − 1
a+1 < −1, i.e. the geodesic

intersects C; if 0 < u < 1, then (3.5) implies that w < − 1
b < a < 0, thus the

corresponding geodesic intersects C if w < −1, and it intersects first C+ and then
C−, if −1 < w < 0. Similarly, for the case a < −1 we have: if 0 < u < 1, then either
w < − 1

b < a < −1 or w > − 1
b−1 > 1, i.e. the geodesic intersects C; if −1 < u < 0,
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then (3.6) implies that w > − 1
a > b > 0, therefore the corresponding geodesic

intersects C if w > 1, and it intersects first C− and then C+ if 0 < w < 1. �
Based on Proposition 3.4 we introduce the notion of the cross-section point. It

is either the intersection of a reduced geodesic γ with C, or, if γ does not intersect
C, its first intersection with C− ∪ C+.

Now we can define a map

ϕ : Λa,b → SH , ϕ(u,w) = (z, ζ)

where z ∈ H is the cross-section point on the geodesic γ from u to w, and ζ is the
unit vector tangent to γ at z. The map is clearly injective. Composed with the
canonical projection π introduced in (2.1) we obtain a map

π ◦ ϕ : Λa,b → SM.

Let Ca,b = π ◦ ϕ(Λa,b) ⊂ SM . This set can be described as follows: Ca,b =
P ∪Q1 ∪Q2, where P consists of the unit vectors based on the circular boundary
of the fundamental region F pointing inward such that the corresponding geodesic
γ on the upper half-plane H is (a, b)-reduced, Q1 consists of the unit vectors based
on the right vertical boundary of F pointing inward such that either Sγ or TSγ
is (a, b)-reduced (notice that they cannot both be reduced), and Q2 consists of the
unit vectors based on the left vertical boundary of F pointing inward such that
either Sγ or T−1Sγ is (a, b)-reduced (see Figure 3). Then a.e. orbit of {ϕt} returns
to Ca,b, i.e. Ca,b is a cross-section for {ϕt}, and Λa,b is a parametrization of Ca,b.
The map π ◦ ϕ is injective, as follows from Remark 3.2: only one of the geodesics
γ, Sγ, T−1Sγ, and TSγ can be reduced.
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on the right vertical boundary of F pointing inward such that either Sγ or TSγ
is (a, b)-reduced (notice that they cannot both be reduced), and Q2 consists of the
unit vectors based on the left vertical boundary of F pointing inward such that
either Sγ or T−1Sγ is (a, b)-reduced (see Figure 3). Then a.e. orbit of {ϕt} returns
to Ca,b, i.e. Ca,b is a cross-section for {ϕt}, and Λa,b is a parametrization of Ca,b.
The map π ◦ ϕ is injective, as follows from Remark 3.2: only one of the geodesics
γ, Sγ, T−1Sγ, and TSγ can be reduced.
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Figure 3. The cross-section (left) and its Λa,b parametrization (right)

4. Symbolic coding of the geodesic flow via (a, b)-continued
fractions.

If γ is a geodesic on H, we denote by γ̄ the canonical projection of γ on M . For
a given geodesic on M that can be reduced in finitely many steps, we can always
choose its lift γ to H to be (a, b)-reduced.

The following theorem provides the basis for coding geodesics on the modular
surface using (a, b)-coding sequences.

Theorem 4.1. Let γ be an (a, b)-reduced geodesic on H and γ̄ its projection to M .
Then
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Theorem 4.1. Let γ be an (a, b)-reduced geodesic on H and γ̄ its projection to M .
Then

(1) each geodesic segment of γ̄ between successive returns to the cross-section
Ca,b produces an (a, b)-reduced geodesic on H, and each reduced geodesic
SL(2,Z)-equivalent to γ is obtained this way;

(2) the first return of γ̄ to the cross-section Ca,b corresponds to a left shift of
the coding sequence of γ.

Proof. (1) By lifting a geodesic segment on M starting on Ca,b to H, we obtain a
segment of a geodesic γ on H that is reduced by the definition of the cross-section
Ca,b. A coding sequence of γ = γ0 that connects u0 to w0 = bn0, n1, . . . ea,b,

bγ0e = b. . . , n−2, n−1, n0, n1, n2, . . . e,
is obtained by extending the sequence of digits of w0 to the past as explained in
the previous section.

Let us assume that w0 > 0, i.e. n0 ≥ 1. The case w0 < 0 can be treated
similarly. The geodesic ST−n0γ0 = γ1 is reduced by Theorem 1.1. Let z0 and z1

be the cross-section points on γ0 and γ1, respectively. Then z′1 = Tn0Sz1 ∈ γ0;
it is the intersection point of γ0 with the circle |z − n0| = 1. We will show that
the geodesic segment of γ0, [z0, z

′
1] projected to M is the segment between two

successive returns to the cross-section Ca,b. Since ST−n0(z′1) = z1 is the cross-
section point on γ1, the geodesic segment [z0, z

′
1] projected to M is between two

returns to Ca,b. Recall that a geodesic in F consists of countably many oriented
geodesic segments between consecutive crossings of the boundary of F that are
obtained by the canonical projection of γ0 to F .

If z0 is the intersection of γ0 with C, there are two possibilities. First, when γ0

intersects F or γ0 does not intersect F and ST−1γ0 exists F through it circular
boundary, and, second, when γ0 does not intersect F and ST−1γ0 exists F through
it left vertical boundary. In the first case the segments in F are represented by the
intersection with F of the following geodesics in H: T−1γ0, T

−2γ0, . . . , T
−n0+1γ0,

either ST−n0+1γ0 or T−n0γ0, and either γ0, or ST−1γ0.
Suppose that for some intermediate point z ∈ γ0, z ∈ [z0, z

′
1] the unit vector

tangent to γ0 at z, (z, ζ) is projected to Ca,b. By tracing the geodesic γ0 inside F ,
we see that (z, ζ) must be projected to (z̄, ζ̄) with z̄ on the boundary of F and ζ̄
directed inward. Then the geodesic through (z̄, ζ̄)

(a) enters F through its vertical boundary and exits it also through the vertical
boundary,

(b) enters F through its vertical boundary and exits through its circular bound-
ary, or

(c) enters F through its circular boundary and exits through its vertical bound-
ary.

The following assertions are implied by the analysis of the attractor Da,b. In case
(a), T−1ST−sγ0 is not reduced for 1 ≤ s < n0 since s < n0, T−sw0 > b, hence
ST−sw0 > − 1

b , i.e. (ST−su0, ST
−sw0) /∈ Da,b, therefore

(T−1ST−su0, T
−1ST−sw0) /∈ Λa,b.

In case (b), either the segment T−n0γ0 exits through the circular boundary of F ,
ST−n0γ0 = γ1 is reduced, and we reached the point z1 on the cross-section. If
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the segment T−n0+1γ0 intersects the circular boundary of F , ST−n0+1γ0 is not
reduced. In case (c), ST−n0+1 is not reduced.

In the second case the first digit of w0, n0 = 2. This is because n0 = 1 would
imply b + 1 < w < − 1

b−1 which is impossible. Thus ST−2γ0 = γ1 is reduced. In
this case the geodesic in F consists of the intersection with F of a single geodesic
ST−1γ0 that enters F through its right vertical and leave it through its left vertical
boundary, since (TS)T (ST−1γ0) = ST−2γ0 = γ1 is reduced. In all cases the
geodesic segment [z0, z

′
1] projected to M is between two consecutive returns to

Ca,b.
If z0 /∈ C, by Proposition 3.4, since w0 > 0, z0 ∈ C−. Notice that this implies

that a < −1 and n0 = 1, and γ1 = ST−1γ0 is reduced. In this case the geodesic
in F also consists of the intersection with F of a single geodesic Sγ0 that enters
F through its right vertical and leave it through its left vertical boundary, since
(TS)T (Sγ0) = ST−1γ0 = γ1 is reduced, and hence the geodesic segment [z0, z

′
1]

projected to M is between two consecutive returns to Ca,b. Continuing this argu-
ment by induction in both positive and negative direction, we obtain a bi-infinite
sequence of points

(. . . , z−2, z−1, z0, z1, z2, . . . ),
where zk is the cross-section point of the reduced geodesic γk in the sequence of γ0,
that represents the sequence of all successive returns of the geodesic γ0 in M to the
cross-section Ca,b.

If γ̃0 is a reduced geodesic in H, SL(2,Z)-equivalent to γ0, then both project to
the same geodesic on M . Therefore, the cross-section point z̃0 of γ̄0 projects on
Ca,b to a cross-section point zk of γk for some k. This completes the proof of (1).

(2) Since γ1 = ST−n0γ0, w1 = ST−n0w0 = bn1, n2, . . . ea,b. The first digit of
the past is evidently n0, and the remaining digits are the same as for γ0. Thus (2)
follows. �

The following corollary is immediate.

Corollary 4.2. If γ′ is SL(2,Z)-equivalent to γ, and both geodesics can be reduced
in finitely many steps, then the coding sequences of γ and γ′ differ by a shift.

It implies a very important property of (a, b)-continued fractions that escapes a
direct proof.

Corollary 4.3. (The Tail Property) For almost every pair of real numbers
that are SL(2,Z)-equivalent, the “tails” of their (a, b)-continued fraction expansions
coincide.

Remark 4.4. The set of exceptions in Corollary 4.3 is the same as the one described
in Theorem 1.1(3).

Thus we can talk about coding sequences of geodesics on M . To any geodesic γ
that can be reduced in finitely many steps we associate the coding sequence (3.3)
of a reduced geodesic SL(2,Z)-equivalent to it. Corollary 4.2 implies that this
definition does not depend on the choice of a particular representative: sequences
for equivalent reduced geodesics differ by a shift.

Let Xa,b be the closure of the set of admissible sequences and σ be the left shift
map. The coding map Cod : Xa,b → Ca,b is defined by

(4.1) Cod(b. . . , n−2, n−1, n0, n1, . . . e) = (1/(n−1, n−2, . . . ), bn0, n1, . . . ea,b).
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This map is essentially bijective.
The symbolic system (Xa,b, σ) ⊂ (N Z, σ) is defined on the infinite alphabet

N ⊂ Z \ {0}. The product topology on N Z is induced by the distance function

d(x, x′) =
1
m
,

where x = (ni), x′ = (n′i) ∈ N Z, and m = max{k | ni = n′i for |i| ≤ k}.
Proposition 4.5. The map Cod is continuous.

Proof. If d(x, x′) < 1
m , then the (a, b)-expansions of the attracting end points w(x)

and w(x′) of the corresponding geodesics given by (3.2) have the same first m
digits. Hence the first m convergents of their (a, b)-expansions are the same, and
using the properties of (a, b) continued fraction and the rate of convergence of[16,
Theorem 2.1] we obtain |w(x) − w(x′)| < 2

m . Similarly, the first m digits in the
convergent formal minus continued fraction of 1

u(x) and 1
u(x′) are the same, and

hence |u(x) − u(x′)| < 2|u(x)u′(x)|
m < 2

m . Therefore the geodesics are uniformly 2
m -

close. But the tangent vectors v(x), v(x′) ∈ Ca,b are determined by the intersection
of the corresponding geodesic with the unit circle or the curves C+ and C−. Hence,
by making m large enough we can make v(x′) as close to v(x) as we wish. �

In conclusion, the geodesic flow becomes a special flow over a symbolic dynamical
system (Xa,b, σ) on the infinite alphabet N ⊂ Z \ {0}. The ceiling function ga,b(x)
on Xa,b coincides with the time of the first return of the associated geodesic γ(x)
to the cross-section Ca,b. One can establish an explicit formula for ga,b(x) as the
function of the end points of the corresponding geodesic γ(x), u(x), w(x), following
the ideas explained in [8]. If−1 ≤ a ≤ 0 and 0 ≤ b ≤ 1, then ga,b(x) is cohomologous
to 2 log |w(x)|; more precisely,

ga,b(x) = 2 log |w(x)|+log h(x)−log h(σx) where h(x) =
|w(x)− u(x)|

√
w(x)2 − 1

w(x)2
√

1− u(x)2
.

5. Dual codes

We have seen that a coding sequence for a reduced geodesic from u to w (3.3) is
comprised from the sequence of digits in (a, b)-expansion of w and the “past”, an
infinite sequence of non-zero integers, each digit of which depends on w and u. In
some special cases the “past” only depends on u, and, in fact, it will coincide with
the sequence of digits of 1/u by using a so-called dual expansion to (a, b).

Let ψ(x, y) = (−y,−x) be the reflection of the plane about the line y = −x.

Definition 5.1. If ψ(Da,b) coincides with the attractor set Da′,b′ for some (a′, b′) ∈
P, then the (a′, b′)-expansion is called the dual expansion to (a, b). If (a′, b′) = (a, b),
then the (a, b)-expansion is called self-dual.

Example 5.2. The classical situations of (−1, 0)- and (−1, 1)-expansions are self-
dual. Two more sophisticated examples ( 1−

√
5

2 , 3−
√

5
2 ) and (− 3

8 ,
2
3 ), respectively,

are shown in Figure 4.

Example 5.3. The expansions (− 1
n , 1 − 1

n ), n ≥ 1, satisfy a weak cycle property
and have dual expansions that are periodic. A classical example in this series is the
Hurwitz case (− 1

2 ,
1
2 ) whose dual is ( 1−

√
5

2 , −1+
√

5
2 ) (see [9, 14]). Their domains are

shown in Figure 5.



12 SVETLANA KATOK AND ILIE UGARCOVICI

12 SVETLANA KATOK AND ILIE UGARCOVICI

The following result gives equivalent characterizations for an expansion to admit
a dual.

Proposition 5.4. The following are equivalent:
(i) the (a, b)-expansion has a dual;
(ii) the boundary of the lower part of the set Da,b does not have y-levels with

a < y < 0, and the boundary of the upper part of the set Da,b does not have
y-levels with 0 < y < b;

(iii) a and b do not have the strong cycle property.

Proof. If the (a, b)-expansion has a dual (a′, b′)-expansion, then the parameters a′, b′

are obtained from the boundary of Da,b as follows: the right vertical boundary of
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Figure 4. Domains of self-dual expansions
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are obtained from the boundary of Da,b as follows: the right vertical boundary of
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the upper part of Da,b is the ray x = 1 − b′, and the left vertical boundary of the
lower part of Da,b is the ray x = −1 − a′. Now assume that (ii) does not hold.
Then at least one of the parameters a, b has the strong cycle property, and either
the left boundary of the upper part of Λa,b or the right boundary of the lower part
of Λa,b is not a straight line. Assume the former. Then the reflection of Da,b with
respect to the line y = −x is not Da′,b′ since the map Fa′,b′ is not bijective on it:
the black rectangle in Figure 6 belongs to it, but its image under T−1, colored in
grey, does not. Thus (i)⇒(ii).
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Figure 6. Dual expansions and Da,b

Conversely, let the vertical line x = 1 − b′ be the right boundary of the upper
part of Da,b and the vertical line x = −1 − a′ be the left boundary of the lower
part of Da,b. Let [xa,∞]× {a} be the intersection of Da,b with the horizontal line
at the level a, and [−∞, xb] × {b} be the intersection of Da,b with the horizontal
line at the level b. Then a′ = 1

xb
and b′ = 1

xa
. We also see that 1 − b′ = − 1

t ,
where t = xb or t < xb if [t, xb] × {0} is a segment of the boundary of Da,b. Then
−b′ + 1 = − 1

t ≤ a′, which implies b′ − a′ ≥ 1. By Lemma 5.6 of [16] xb ≤ −1 and
xa ≥ 1, therefore

(5.1) −1 ≤ a′ ≤ 0 ≤ b′ ≤ 1,

and

(5.2) Λa,b = Da,b ∩ {(u, w) ∈ R̄2 : −b′ ≤ u ≤ −a′}.
We now show that ψ(Da,b) = Da′,b′ is the attractor for Fa′,b′ , where

(5.3) Fa′,b′ = ψ ◦ F−1
a,b ◦ ψ−1.

For (u, w) ∈ Da′,b′ with a′ < w < b′ we have ψ−1(u, w) = (−w,−u) with −b′ <

u < −a′, so ψ−1(u, w) ∈ Λa,b by (5.2), hence F−1
a,b (−w,−u) = (1/w, 1/u), and

Fa′,b′(u, w) = (−1/u,−1/w). For (u, w) ∈ Da′,b′ with w > b′ we have ψ−1(u, w) =
(−w,−u) with u < −b′, so F−1

a,b (−w,−u) = (−w+1,−u+1), and Fa′,b′(u, w) = (u−
1, w − 1). Similarly, for (u, w) ∈ Da′,b′ with w < a′ we have ψ−1(u, w) = (−w,−u)
with u > −a′, so F−1

a,b (−w,−u) = (−w−1,−u−1), and Fa′,b′(u, w) = (u+1, w+1).
This proves that (ii)⇒(i).

Notice that (ii) and (iii) are equivalent by Theorems 4.2 and 4.5 of [16]. !
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Fa′,b′(u,w) = (−1/u,−1/w). For (u,w) ∈ Da′,b′ with w > b′ we have ψ−1(u,w) =
(−w,−u) with u < −b′, so F−1

a,b (−w,−u) = (−w+1,−u+1), and Fa′,b′(u,w) = (u−
1, w − 1). Similarly, for (u,w) ∈ Da′,b′ with w < a′ we have ψ−1(u,w) = (−w,−u)
with u > −a′, so F−1

a,b (−w,−u) = (−w−1,−u−1), and Fa′,b′(u,w) = (u+1, w+1).
This proves that (ii)⇒(i).
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Notice that (ii) and (iii) are equivalent by Theorems 4.2 and 4.5 of [16]. �
Remark 5.5. Notice that if an (a, b)-expansion has a dual, then −1 ≤ a ≤ 0 ≤ b ≤ 1.
This follows from (5.1) and the fact that the relation of duality is symmetric.

Theorem 5.6. If an (a, b)-expansion admits a dual expansion (a′, b′), and γ0 is an
(a, b)-reduced geodesic, then its coding sequence

(5.4) bγ0e = b. . . , n−2, n−1, n0, n1, n2, . . . e,
is obtained by juxtaposing the (a, b)-expansion of w0 = bn0, n1, n2, . . . ea,b and the
(a′, b′)-expansion of 1/u0 = bn−1, n−2, . . . ea′,b′ . This property is preserved under
the left shift of the sequence.

Proof. We will show that the digits in the (a′, b′)-expansion of 1/u0 coincide with
the digits of the “past” of (5.4). By (5.3), the following diagram

Λa,b
Sψ−−−−→ Λa′,b′

R-1
a,b

y
yRa’,b’

Λa,b
Sψ−−−−→ Λa′,b′

is commutative. The pair (u0, w0) ∈ Λa,b, therefore (Su0, Sw0) ∈ SΛa,b ⊂ Da,b,
and (1/w0, 1/u0) ∈ Λa′,b′ . The first digit of the (a′, b′)-expansion of 1/u0 is n−1, so

Ra′,b′(1/w0, 1/u0) = (ST−n−1(1/w0), ST−n−1(1/u0))

maps Λa′,b′ to itself. Then

(u−1, w−1) := R−1
a,b(u0, w0) = (Tn−1Su0, T

n−1Sw0) ∈ Λa,b

and (ST−n−1u−1, ST
−n−1w−1) = (u0, w0). Also w−1 = bn−1, n0, n1, . . . ea,b, and

ST−n−1(1/u0) = 1/u−1 = bn−2, . . . ea′,b′ .
Continuing by induction, one proves that all digits of the “past” of the sequence

(5.4) are the digits of the (a′, b′)-expansion of 1/u0.
In order to see what happens under a left shift, we reverse the diagram to obtain:

Λa,b
Sψ−−−−→ Λa′,b′

Ra,b

y
yR-1

a’,b’

Λa,b
Sψ−−−−→ Λa′,b′

Since the first digit of (a, b)-expansion of w0 is n0,

Ra,b(u0, w0) = (ST−n0u0, ST
−n0w0)

maps Λa,b to itself. Then (u1, w1) := (ST−n0u0, ST
−n0w0) and w1 = bn1, n2, . . . ea,b.

Also
(1/w1, 1/u1) = R−1

a′,b′(1/w0, 1/u0) = (Tn0 S(1/w0), Tn0 S(1/u0)),
hence 1/u1 = bn0, n−1, n−2, . . . ea′,b′ . �
Remark 5.7. Under conditions of Theorem 5.6, if γ0 projects to a closed geodesic
on M , then its coding sequence is periodic, and w0 = bn0, n1, . . . , nmea,b, 1/u0 =
bnm, . . . , n1, n0ea′,b′ .
Theorem 5.8. If an (a, b)-expansion admits a dual expansion, then the symbolic
space (Xa,b, σ) is a sofic shift.
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Proof. The “natural” (topological) partition of the set Λa,b related to the alphabet
N is Λa,b = ∪n∈NΛn, where Λn are labeled by the symbols of the alphabet N and
are defined by the following condition: Λn = {(u,w) ∈ Λa,b | n0(u,w) = n0(w) =
n}. In order to prove that the space (Xa,b, σ) is sofic one needs to find a topological
Markov chain (Ma.b, τ) and a surjective continuous map h : Ma,b → Xa,b such that
h ◦ τ = σ ◦ h.

Notice that the elements Λn are rectangles for large n; in fact, at most two
elements in the upper part and at most two elements in the lower part of Λa,b are
incomplete rectangles (see Figure 7).
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Figure 7. The partition of Λa,b and its image through Ra,b.

Since Λa,b has finite rectangular structure, we can sub-divide horizontally these
incomplete rectangles into rectangles, and extend the alphabet N by adding sub-
scripts to the corresponding elements of N . For example, if Λ2 is subdivided into
two rectangles, Λ2 = ∪2

i=1Λ2i , the “digit” 2 will give rise to two digits, 21, 22 in
the extended alphabet N ′ (see Figure 7). We denote the new partition of Λa,b by
∪n∈N ′Mn. Notice that it consists of rectangles with horizontal and vertical sides.
Since the first return R to Λa,b corresponds to the left shift of the coding sequence
x associated to the geodesic (u, w), we see that x = {nk}∞−∞, where nk is defined
by Rk(u, w) ∈ Λnk

. Now we define the symbolic space Ma,b as follows: to each
sequence x ∈ Xa,b we associate a geodesic (u, w) by (4.1), and define a new coding
sequence y = {mk}∞−∞, where mk is defined by Rk(u, w) ∈ Mmk

, and τ is the left
shift.
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, and τ is the left
shift.
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We will prove that (Ma,b, τ) is a topological Markov chain. For this, in accor-
dance to [2, Theorem 7.9], it is sufficient to prove that for any pair of distinct symbol
n,m ∈ N ′, R(Mn) and Mm either do not intersect, or intersect “transversally” i.e.
their intersection is a rectangle with two horizontal sides belonging to the horizon-
tal boundary of Mm and two vertical sides belonging to the vertical boundary of
R(Mn). Let us recall that −1 ≤ a ≤ 0 ≤ b ≤ 1 (see Remark 5.5). Therefore,
if Mn = Λn is a complete rectangle, it is, in fact, a 1 × 1 square, and its image
under R is an infinite vertical rectangle intersecting all Mm transversally. If Mn is
obtained by subdivision of some Λk and belongs to the lower part of Λa,b, its hori-
zontal boundaries are the levels of the step-function defining the lower component
of Da,b, and by Proposition 5.4, since the lower boundary of Da,b does not have
y-levels with a < y < 0, its image is a vertical rectangle intersecting only the lower
component of Da,b whose horizontal boundaries are the levels of the step-function
defining the lower component of Da,b. Therefore, all possible intersections with Mm

are transversal. A similar argument applies to the case when Mn belongs to the
upper part of Λa,b. The map h : Ma,b → Xa,b is obviously continuous, surjective,
and, in addition, h ◦ τ = σ ◦ h. �

6. Invariant measures and ergodic properties

Based on the finite rectangular geometric structure of the domain Da,b and the
connections with the geodesic flow on the modular surface, we study some of the
measure-theoretic properties of the Gauss-type map f̂a,b : [a, b)→ [a, b),

(6.1) f̂a,b(x) = − 1
x
−
⌊
− 1
x

⌉

a,b

, f̂a,b(0) = 0 .

Notice that the associated natural extension map F̂a,b

(6.2) F̂a,b(x, y) =
(
f̂a,b(x),− 1

y − b−1/xea,b

)

is obtained from the map Fa,b induced on the set Λa,b by the change of coordinates

(6.3) x = −1/w, y = u

(or, equivalently, on the set Da,b ∩{(u,w)|a ≤ w < b} by the change of coordinates
x = w, y = −1/u). Therefore the domain Λ̂a,b of F̂a,b is easily identified knowing
Λa,b and may be considered as its “compactification”.

Many of the measure-theoretic properties of f̂a,b and F̂a,b (existence of an ab-
solutely continuous invariant measure, ergodicity) follow from the fact that the
geodesic flow ϕt on the modular surface M can be represented as a special flow
(Ra,b,Λa,b, ga,b) on the space

Λga,b

a,b = {(u,w, t) : (u,w) ∈ Λa,b, 0 ≤ t ≤ ga,b(u,w)}

(see Section 2). We recall that Ra,b = Fa,b|Λa,b
and ga,b is the ceiling function (the

time of the first return to the cross-section Ca,b) parametrized by (u,w) ∈ Λa,b.
We start with the fact that the geodesic flow {ϕt} preserves the smooth (Liou-

ville) measure dm =
dudwdt

(w − u)2
(see, e.g., [3]), hence Ra,b preserves the absolutely
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continuous measure dρ =
dudw

(w − u)2
. Using the change of coordinates (6.3), the map

F̂a,b preserves the absolutely continuous measure dν =
dxdy

(1 + xy)2
.

The set Λa,b has finite measure dρ if a 6= 0 and b 6= 0, since it is uniformly
bounded away from the line ∆ = {(u,w) : u = w} ⊂ R2 (see relations (3.5) and
(3.6)). In this situation, we can normalize the measure dρ to obtain the smooth
probability measure

(6.4) dρa,b =
dρ

Ka,b
=

dudw

Ka,b(w − u)2

where Ka,b = ρ(Λa,b). Similarly, if a 6= 0 and b 6= 0, the map F̂a,b preserves the
smooth probability measure

(6.5) dνa,b =
dxdy

Ka,b(1 + xy)2

and Ka,b = ρ(Λa,b) = ν(Λ̂a,b).
Returning to the Gauss-type map, f̂a,b, one can obtain explicitly a Lebesgue

equivalent invariant probability measure µa,b by projecting the measure νa,b onto
the x-coordinate (push-forward); this is equivalent to integrating νa,b over Λ̂a,b with
respect to the y-coordinate as explained in [4].

We can immediately conclude that the systems (F̂a,b, νa,b) and (f̂a,b, µa,b) are
ergodic from the fact that the geodesic flow {ϕt} is ergodic with respect to dm.
By using some well-known results about one dimensional maps that are piecewise
monotone and expanding, and the implications for their natural extension maps,
we can establish stronger measure-theoretic properties: (f̂a,b, µa,b) is exact, and
(F̂a,b, νa,b) is a Bernoulli shift. Here we follow the presentation from [23] based on
[21, 18].

Theorem 6.1. For any a 6= 0 and b 6= 0, the system (f̂a,b, µa,b) is exact and its
natural extension (F̂a,b, νa,b) is a Bernoulli shift.

Proof. Let us consider first the case −1 < a < 0 < b < 1. The interval (a, b) admits
a countable partition ξ = {Xi}i∈Z\{0} of open intervals and the map f̂a,b satisfies
conditions (A), (F), (U) listed in [23]. Condition (A) is Adler’s distortion estimate:

(A) : f̂ ′′a,b/(f̂
′
a,b)

2 is bounded on X = ∪i∈Z\{0}Xi,

condition (F) requires the finite image property of the partition ξ,

(F ) : f̂a,b(ξ) = {f̂a,b(Xi)}i∈Z\{0} is finite,

while condition (U) is a uniformly expanding condition

(U) : |f̂ ′a,b| ≥ τ > 1 on X.

Let m ≥ 0 and n ≥ 0 be such that a−m ≤ −1/b < a−m− 1 and b+ n ≤ −1/a <
b+ n+ 1. Consider the open intervals

X1 =
(
− 1
a−m− 1

, b

)
, Xi =

(
− 1
a−m− i , −

1
a−m− i+ 1

)
for i ≥ 2
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and

X−1 =
(
a ,− 1

b+ n+ 1

)
, X−i =

(
− 1
b+ n+ i− 1

, − 1
b+ n+ i

)
for i ≥ 2.

The map f̂a,b satisfies conditions (A), (F), (U) with respect to the partition ξ =
{Xi}i∈Z\{0}. Indeed, |f̂ ′′a,b/(f̂ ′a,b)2| ≤ 2 onX, the collection of images f̂a,b(ξ) consists
of four sets f̂a,b(X1), f̂a,b(X−1), (b − 1, b), (a, a + 1), and |f̂ ′a,b| ≥ min{ 1

a2 ,
1
b2 } > 1

on X. Zweimüller [23] showed that any one-dimensional map for which conditions
(A), (F), (U) hold is exact and satisfies Rychlik’s conditions described in [18], hence
its natural extension map is Bernoulli.

We analyze now the case b ≥ 1. Let K > 0 be the smallest integer such that
b(a + 1)K < 1. We will show that there exists γ > 1 such that, for every x ∈⋂K
i=0 f̂

−i
a,b(X), some iterate f̂na,b(x) with n ≤ K+1 is expanding, i.e. |(f̂na,b)′(x)| ≥ γ.

(For the rest of the proof, we simplify the notations and let f̂ denote the map f̂a,b.)
Notice that if x ∈ ⋂n−1

i=0 f̂
−i(X), then f̂n is differentiable at x and

d

dx
f̂n(x) =

1

(xf̂(x) · · · f̂n−1(x))2
.

Assume that ab > −1. We look at the following cases:

(i) If a < x < 0, then b− 1 ≤ f̂(x) ≤ b, and |xf̂(x)| ≤ |ab| < 1.
(ii) If 0 < x < b, then a ≤ f̂(x) ≤ a + 1. Let K be such that b(a + 1)K < 1.

Then either there exists 1 ≤ n ≤ K such that 0 < f̂ i(x) < a + 1 for i =
1, 2, . . . , n− 1 and a < f̂n(x) < 0, or 0 < f̂ i(x) < a+ 1 for i = 1, 2, . . . ,K.
In the former case we have that

(6.6) |xf̂(x) · · · f̂n(x)| ≤ |ab(a+ 1)n−1| < 1 ,

while in the latter case

(6.7) |xf̂(x) · · · f̂K(x)| ≤ |b(a+ 1)K | < 1 .

In the case ab = −1, let τ, ε > 0 be sufficiently small such that

b < −1/(a+ τ) < b+ 1 and a− 1 < −1/(b− ε) < a .

We have:
(i) If a < x < a+τ , then b−1 < f̂(x) < −1/(a+τ), and |xf̂(x)| ≤ |a/(a+τ)| <

1. If a+ τ ≤ x < 0, then |xf̂(x)| ≤ |b(a+ τ)| < 1.
(ii) If b− ε < x < b, then 0 < f̂(x) < a+ 1 and one has either (6.6) with n ≥ 2

or (6.7). If 0 < x ≤ b− ε, then one has (6.6) or (6.7) where b is replaced by
b− ε.

In conclusion, there exists a constant γ > 1 such that for every x ∈ ⋂Ki=0 f̂
−i
a,b(X)

some iterate f̂na,b(x) with n ≤ K + 1 satisfies the condition |(f̂na,b)′(x)| ≥ γ. This
implies that the iterate f̂Na,b, with N = (K + 1)!, is uniformly expanding, i.e. it
satisfies property (U). Since properties (A) and (F) are automatically satisfied by
any iterate of f̂a,b (see [23]), we have that F̂Na,b is Bernoulli. Using one of Ornstein’s
results [17, Theorem 4, p. 39], it follows that F̂a,b is Bernoulli. �

The next result gives a formula of the measure theoretic entropy of (F̂a,b, νa,b).
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Theorem 6.2. The measure-theoretic entropy of (F̂a,b, νa,b) is given by

(6.8) hνa,b
(F̂a,b) =

1
Ka,b

π2

3

Proof. To compute the entropy of this two-dimensional map, we use Abramov’s
formula [1]:

hm̃({φt}) =
hρa,b

(Ra,b)∫
Λa,b

ga,bdρa,b
,

where m̃ is the normalized Liouville measure dm̃ = dm
m(SM) . It is well-known that

m(SM) = π2/3 (see [3]) and hm̃({φt}) = 1 (see, e.g., [20]). The measure dm̃ can be
represented by the Ambrose-Kakutani theorem [5] as a smooth probability measure
on the space Λga,b

a,b

(6.9) dm̃ =
dρa,bdt∫

Λa,b
ga,bdρa,b

where dρa,b is the probability measure on the cross-section Λa,b given by (6.4). This
implies that

dm̃ =
dρdt

Ka,b

∫
Λa,b

ga,bdρa,b
=

dm

Ka,b

∫
Λa,b

ga,bdρa,b
.

Therefore Ka,b

∫
Λa,b

ga,bdρa,b = m(SM) = π2/3 and

hνa,b
(F̂a,b) = hρa,b

(Ra,b) =
∫

Λa,b

ga,bdρa,b =
1

Ka,b

π2

3
.

�

Since (F̂a,b, νa,b) is the natural extension of (f̂a,b, µa,b), the measure-theoretic
entropies of the two systems coincide, hence

(6.10) hµa,b
(f̂a,b) =

1
Ka,b

π2

3
.

As an immediate consequence of the above entropy formula we derive a growth
rate relation for the denominators of the partial quotients pn/qn of (a, b)-continued
fraction expansions, similar to the classical cases.

Proposition 6.3. Let {qn(x)} be the sequence of the denominators of the partial
quotients pn/qn associated to the (a, b)-continued fraction expansion of x ∈ [a, b).
Then

(6.11) lim
n→∞

log qn(x)
n

=
1
2
hµa,b

(f̂a,b) =
1

Ka,b

π2

6
for a.e. x.

Proof. The proof is similar to the classical case: using the Birkhoff’s ergodic theo-
rem one has

lim
n→∞

log qn(x)
n

= −
∫ b

a

log |x|dµa,b .

At the same time, Rokhlin’s formula tells us that

hµa,b
(f̂a,b) =

∫ b

a

log |f̂ ′a,b|dµa,b = −2
∫ b

a

log |x|dµa,b ,

hence the conclusion. �
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7. Some explicit formulas for the invariant measure µa,b

In order to obtain explicit formulas for µa,b and hµa,b
(f̂a,b), one obviously needs

an explicit description of the domain Da,b. In [16] we describe an algorithmic
approach for finding the boundaries of Da,b for all parameter pairs (a, b) outside of
a negligible exceptional parameter set E . Let us point out that the set Da,b may
have an arbitrary large number of horizontal boundary segments. The qualitative
structure of Da,b is given by the cycle properties of a and b. This structure remains
unchanged for all pairs (a, b) having cycles with similar combinatorial complexity.
For a large part of the parameter set the cycle descriptions are relatively simple
(see [16, Section 4]) and we discuss it herein.

In what follows, we focus our attention on the situation −1 ≤ a ≤ 0 ≤ b ≤ 1,
and due to the symmetry of the parameter set with respect to the parameter line
a = −b we assume that a ≤ −b.

We treat the case 1 ≤ − 1
a ≤ b + 1 and a ≤ − 1

b + m ≤ a + 1 (for some m ≥
1). The coordinates of the corners of the boundary segments in the upper region
Da,b ∩ {(u,w)|u < 0, a ≤ w ≤ b} are given by

(−2, b− 1),
(
−3

2
, T−2S(b− 1)

)
, . . . ,

(
−m+ 1

m
, (T−2S)(m−1)(b− 1)

)
,
(
−1,−1

a
− 1
)

while the corners of the boundary segments in the lower region Da,b ∩ {(u,w)|u >
0, a ≤ w ≤ b} are given by

(
m,−1

b
+m

)
, (m+ 1, a+ 1) .

Therefore the set Λ̂a,b is given by

Λ̂a,b =
m−1⋃

p=1

[(T−2S)p−1(b− 1), (T−2S)p(b− 1)]× [0,
p

p+ 1
]

∪ [(T−2S)m−1(b− 1),−1
a
− 1]× [0,

m

m+ 1
] ∪ [−1

a
− 1, b]× [0, 1]

∪ [a,−1
b

+m]× [− 1
m
, 0] ∪ [−1

b
+m, a+ 1]× [− 1

m+ 1
, 0]

(7.1)

Theorem 7.1. If 1 ≤ − 1
a ≤ b+ 1 and a ≤ − 1

b +m ≤ a+ 1, then

µa,b =
1

Ka,b
ha,b(x)dx ,

where Ka,b = log[(m− a)(1 + b)2−m] and ha,b(x) = h+
a,b(x) + h−a,b(x) with

h+
a,b(x) =





1
x+ p+1

p

if (T−2S)p−1(b− 1) ≤ x < (T−2S)p(b− 1), p = 1, . . . ,m− 1

1
x+ m+1

m

if (T−2S)m−1(b− 1) ≤ x < − 1
a − 1

1
x+ 1

if − 1
a − 1 ≤ x < b
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Figure 8. Typical domain Λ̂a,b for the case studied

and

h−a,b(x) =





1
m− x

if a ≤ x < − 1
b + m

1
m + 1− x

if − 1
b + m ≤ x < a + 1 .

Proof. The density formulas are obtained from the simple integration result

(7.2)
∫ d

c

1
(1 + xy)2

dy = − 1
x

(
1

1 + dx
− 1

1 + cx

)
=

d

1 + dx
− c

1 + cx
.

For the density in the upper part of Λ̂a,b, y ≥ 0, all integrals have the lower
boundary c = 0, hence the result of (7.2) becomes 1/(x + 1/d). This gives the
description of h+

a,b(x). For the density in the lower part of Λ̂a,b, y ≤ 0, all integrals
have the upper boundary d = 0, hence the result −1/(−1/c−x) and the description
of h−a,b(x). By a somewhat tedious computation, we get

Ka,b =
∫

Λa,b

ha,b(x)dx = log[(m− a)(1 + b)2−m] ,

and this completes the proof. !
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Figure 8. Typical domain Λ̂a,b for the case studied
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