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ABSTRACT 

We derive for Hecke--Maass cusp forms on the full modular group a relation 

between the sum of the form at Heegner points (and integrals over Heegner 

cycles) and the product of two Fourier coefficients of a corresponding form 

of hMf-integral weight. Specializing to certain cycles we obtain the non- 

negativity of the L-function of such a form at the center of the critical strip. 

These results generalize similar formulae known for holomorphic forms. 

O. In t roduc t ion  

In a somewhat neglected paper [M] Maass discovered that the sum of a Maass 

cusp form ~ over the "Heegner points" of a given discriminant d is equal to the 

dth Fourier coefficient of a Maass form of 1-integral weight. See also more recent 

work of Hejhal [H]. Later after Shimura's fundamental paper IS] on 1-integral 

weight forms, Shintaai [Sh], Niwa IN], Waldspurger [W], Kohnen [Kol], [Ko2] 
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and Kohnen and Zagier [KoZ] studied this phenomenon for holomorphic forms. 

In particular, it was found that the constant of proportionality (after suitable 

normalizations) in the above relation is also a Fourier coefficient! Our purpose in 

this paper is to return to the Maass case and develop a precise form of the identity 

in the non-holomorphic case. Our result has a nmnber of applications. Firstly 

to the equidistribution of the Heegner points. Following the analysis in Duke [D] 

one can use the precise form to develop sharp forms of equidistribution. Secondly 

we prove that the L-function of a Maass-Hecke cusp form for r = SL2(Z) is non- 

negative at the center of its critical strip. Note that this non-trivial fact follows 

immediately from the Riemann Hypothesis for the L-function. The analogous 

result in the holomorphie case is due to Waldspurger [W] and Kohnen-Zagier 

[KoZ]. 
The new identity may be viewed as an extension to Maass cusp forms of a 

well-known relation for Eisenstein series. 

Let s = SL2(Z) denote the modular group. It acts on integral binary quadratic 

forms az s + bzy + cy 2 in the usual way and leaves the discriminant d = b 2 - 

4ac invariant. For a fixed d -- 0,1 (mod4) let Ad denote a complete set of r 

inequivalent forms of discriminant d. If d < 0 we associate to each ax 2 + bxy + cy 2 

the point z E Y) = {z[ Ira(z) > 0}, z ---- -b.~d. In this way we get h(d) = [Ad[ 

points in F\Yj which we refer to as the Heegner points of discriminant d (these wiU 

also be denoted by Ad). We shall denote the sum over H e e l e r  points weighted 

by one over the order of the stabilizer by ~"~*r . Similarly if d > 0 we obtain 

geodesic cycles in r\Yj which we refer to as Heegner cycles. 

The Eisenstein series for s is defined by 

s 1~ a 

(o.1) Imz+,-,p.' 
m , ~  

Let X, be the Dirichlet character x,(n)  = ({) where (d) is the Kronecker symbol 

IS]. For d a fundamental discriminant (say d < 0) the following is well known: 

(0 .2)  Z "E(z, ,) = ((s)L(s, Xd) 
zEA, 

where 

o o  

(o.3)  = 
oo 

L ( , , x , )  = x,(,) 
n J  

n = l  n ~ l  
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Now the right hand side in (0.2) may be interpreted as a product of the first 

and the dth Fourier coefficients of the Eisenstein series of �89 weight [GH]. 

From this point of view our identity generalizes (0.2) with E(z, s) being replaced 

by a Maass cusp form. 

Let 

U =L2usp(r\J~) = {f: Yj --~ C I f(Tz ) = f(z) for 7 q F, 

(0.4) Jr ]f[2d~-Y'-2Y < eo' folf(z'v)dz=O f~ Y}" 

Then U is a Hilbert space with the obvious inner product ( , ); it is invariant 

by the actions of the Laplace operator A0 y2:~a--~r2 a~ = ~0= +~f f ru )andby theHecke  

operators T,,, m = 2, 3, . . .  (see w These operators commute and there is an 

orthogonal basis of U consisting of simultaneous eigenforms for A0 and 7",,. Such 

eigenforms will be called Maass-Hecke  forms. 

Similarly we introduce a Hilbert space 

V =L~,,p(P0(4)\Yj, J) 

(0.5) ={ / :  .~ ~ C I/(Tz) = J(7,z)f(z) for 7 E r0(4), 

f cuspidal and square integrable}. 

Here 1"0(4) E rl 
V1/4 oo 2 ~'~,=-oo e(n z) with the usual abbreviation e(z) = e 2'~iz, and cuspidal means 

the zeroth Fourier coefficient is 0 in each of the 3 cusps of I~0(4)\Yj. This time the 

Laplacian A1/2 and Hecke operators T f ,  p ~ 2 leave V invariant, are self-adjoint 
and commute with each other. Here 

The linear operators r2 and a map V --, V where 

(0.7) r2F(z) = e i'/` ( z._'~ -1/2F(_l/4z) ' 

(0.8) EF(z) V~ 
v mod 4 

If L = r2~r then L: V ~ V is in fact self-adjoint and commutes with A1/2 and 

T f .  Thus we can find an orthonormal basis of V of simultaneous eigenforms 
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F1,F2,...  of L, A1 / z ,T f ,  p ~ 2. The subspace V + of V on which LF = F will 
r [Kol]. The Fj's are play a central and similar role to Kohnen's space "t+1/2 

Maass forms of weight ~. 

Maass forms in U or V are invariant by z ~ z -k I and so have Fourier devel- 

opments. From the differential equation 

1 (the "weight") (0.0) A ~ f  + ~ f  = 0, k = 0 or 

and the fact that f is square integrable one finds a development of the form 

(0.10) f(z) = ~ b(n)W~,s.C.),i.C47rlnlY)e(nz) 
n~0 

where 1 2 ~ + r  -- )~ and W is the usual Whittaker function [MO] which is normalized 

so that 

(0.11) W#,~,(I/) "-' e- ' /21/# as I/"-* c~. 

The numbers b(n) above are uniquely determined and called t h e  F o u r i e r  

coeff ic ients  o f  f .  We will denote the Fourier coefficients of the weight �89 eigen- 

basis Fj by pj(n). 
Concerning a non-zero Maass-Hecke eigenform ~ of weight 0 (i.e. in U) we 

can (by Proposition 1.2) and will always normalize ~ so that its first coefficient 

b(1) = 1--we call this H e c k e  normal ized .  The L- func t ion  associated with a 

Maass form r E U is defined by 

oo b(n) 
(0.13) = . . - 1 / 5 ,  

n = l  

where b(n) are Fourier coefficients of ~. 

Given one of the Fj's6 V we define 

f r  ~ dudv ~(w) = 0~,)\~ F~(z)O(z,w) -~- 

where O(z, w) is the Siegel's O-function discussed in w Then by Proposition 

4.1, ~b E U. If pj(1) = 0, ~b = 0; while if pj(1) ~ 0, it is a Maass-Hecke eigenform 

and hence can be Hecke normalized. Such a Heeke normalized form q0 E U will 

be called the S h i m u r a  lift of Fj and will be denoted by Shim (Fj): 

E (0.14) ~ = Shim(Fj) = a(n)Wo,2i,~ (4~rln[y)e(nz) 
n#O 
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1 2 (for Fj). It is an even form (i.e. a ( -n )  = a(n)) and its Fourier where A~ = ~ + r~ 

coefBcients satisfy 

oo oo 

(0.15) r -t- 1) E PJ(n2) =" pj(1) E a(n)n- ' .  ns-l/2 
n=l  n=l  

We can now state the Theorem. 

THEOREM: Let ~ be an even Hecke normalized Maass cusp form in U then 

(i) Xfd < 0 

1 * 
( 0 . 1 6 )  (~ ,~o)  ~ ~(=) = 24~1d1'/' ~ pj(d)pi(1). 

zEA~ Shim(Fj )=~ 

(ii) /f d > 0 

(o.17) 1 ~ f ~ods = 12~rl12d314 E pj(d)pj(1), 
(~0, ~) C'~. JC Shim(Fj)----~ 

where d8 is the h y p e r b o l i c  arc  length. 

Some remarks concerning the Theorem are the following. 

(a) The sum on the right hand side (hence-forth the spectral side) is finite. It 

is over an orthonormal basis of the finite dimensional subspace of g + consisting 

of F's whose Tp3 eigenvalues and AI/2 eigenvalue correspond via (0.15) to those 

Hecke eigenvalues Tp (p ~ 2) of ~0 and Laplace eigenvalue. The sum in question 

is clearly independent of the orthonormal basis chosen. One could check using 

the trace formula whether the space of such Fj's is 1-dimensional, but we have 

not clone so. 

(b) In the form we have stated (0.16), it dearly gives the promised generaliza- 

tion of (0.2). 

(c) If d = 1 then A1 consists of the single form zy, the corresponding cycle is 

the geodesic [0, ioo], and (0.17) yields 

(0.1s) 1 ~(i~) = 12~ 1/~ ~ Ipi(1)l 2. 
Shim(Fj)ffir 

Hence by Proposition 1.3 with s -- 0 

(0.19) x ~ ~' , 2 / ,w,l) =12~,/~ ~ Ipj(1)l ~ 
Shim(Fj )----~ 

where L(~,s) is the L-function of ~ defined in (0.13). In particular, we have 
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COROLLARY 1: If ~ is an even Hecke normalized eigenform/n U then 

1 
L(~, ~) > 0. 

Note that if ~ is odd then L(@, �89 = 0 simply because of the sign of the 

functional equation. 

(d) If L(~, �89 -- 0 then the sum in the right-hand side of (0.19) is vacuous, 

hence we have 

COROLLARY 2: �89 = 0 then 

=o  or Ud<O, 
zEA~ 

(0.20) /c~dt = 0  f o r a H d <  0. 
CEAd 

Such cusp forms, if they exist, would lle in the space introduced by Zagier 

[z, (21)]. 
(e) In the holomorphic setting the analogue of the Theorem has been developed 

in much greater generality, specifically, on the fight-hand side two general coeffi- 

cients p j (d )p j (d ' )  are allowed as well as forms on congruence subgroups r0(N), 

see [Ko2], IS] and Shimura's recent paper [$2] where the holomorphic version of 

(0.19) is derived in great generality including Hilbert modular forms. It would 

be interesting to give such extensions of the above Theorem. Our interest in this 

formula, however, was primarily in connection with the class numbers h(d) = Ihdl 

(and the corresponding location of these C.M. points) which is the case captured 

by the Theorem. 

An outline of the paper is as follows. In w we review some results about Maass 

forms and Hecke operators. In w we introduce the Theta function of Siegel which 

is central in our analysis. In w we compute the left hand side of (0.16) and (0.17) 

(hence-forth known as the geometric side). In w the key proportionality constant 

on the spectral side is derived using a technique of Niwa. Finally, in w we deduce 

the identity. 

1. Background:  Maass  cusp forms and Hecke operators  

In this section we review some facts about Maass cusp forms and Hecke operators. 

The Hecke operators T f  U ~ U are defined by the following formula for all 
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. # 0  

(As usual, here and further we assume that b(t) = 0 if t is not an integer.) The 

following propositions follow as in the holomorphic setting, see e.g. IT], [ALl. 

PROPOSITION 1.1: 

(i) {T r } is a commuting fam//y of//near self-adjoint operators Tr: U --* U. 

(ii) T r coincide with the H e r e  operators introduced by Maass: 

p - I  
z + ]  �9 1,2 + ) 

j=0 

(iii) T r commute with the Laplacian Ao. 

(iv) There exists a basis of U, {Pi}, such that Tr~ i = Ai(p)pi , /Xo~j = 

~r 

We shall refer to the following result as the Strong Multiplicity Theorem for 

SL2(Z): 

PROPOSITION 1.2: Let Uo be a subspace of U consisting of eigenfuncfions of ZX0 

and Tp for a / /bu t  finitely many p. Then dim(U0) = 1. Moreover, i f  ~ E Uo, ~ is 

an eigenfunction for all T r. If  ~(z) has the Fourier development 

(1.2) ~(z) = y]~ b(n)W0,~r(4r 
. # 0  

then b(1) = 0 Wand on/y he~ = 0. 

PROPOSITION 1.3: / I  ~ is an even Maass cusp form with eigenwalue equa/ to 

1 (2r) 2, then 
4 

a ( s )"  ~o(iy)y~ ~ = ,r_o_lz2r (s + 1/2 + 2ir)r(S + 1/2 - 2it 1. 
= 2 2 ) .L(~ ,s+~) ,  

a(s) is entre and a(1 - s) = a(s). 

For each prime p ~ 2 introduce the Hecke operator Tp2: V ~ V by the formula 

(1.3) . r  
--1 Fg 
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where (~) is the quadratic residue symbol. Notice that this formula is consistent 

with [S] and [Kol] if we take into account the difference between our definition 

of the space V and a definition of a space of cusp forms of ~-integral weight 

usually used in the holomorphic case [S]. The following proposition establishes 

some properties of the Hecke operators Tr2 and the operator L = r2~r introduced 

in the Introduction (see (0.7) and (0.8)); it follows from IS], [N1] and [Kol]. 

PROPOSITION 1.4: 

(i) For p # 2, T r, is a commuting family of / inear  self-adjoint operators 

Tr2: V ~ V .  

(ii) Tr2 commute with A1/2. 

(iii) L is self-adjoint and satist~es the equation (L - 1)(L + �89 = 0. 

(iv) Tp, commute with L. 

2. O-liftings 

We start with construction of O-functions through the Weil representation [Sh], 

[N]. Let R be an n-dimensionM reM vector space, and Q be an n x n rational 

symmetric matrix with p > 0 positive and q = n - p negative eigenvalues. Take 

a lattice L in R and denote by L* the lattice dual to L in R: 

L* = {, R = ',Qy Z for any y L}. 

We assume L* D L. 

For 

and f(z) in L2(R), the Weil representation ~ ~ ro(a) is defined as follows: 

(2.1) f laln/2e[~ < z, z >]f(az) for c -- 0, 
= "I. ./2 a<z,z> 2<z,y>+d<y,y> [c[- ~ f R e [  - 2c ]f(y)dy for c ~ 0 ,  

where e(z) = exp(2~r/z) as usual. 

For any Schwartz function f E 8 (R)  and any k E L*/L we define 

O(f ,k)=~_~f(z+k) .  
zEL 
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a n d  

(2.2) 

PROPOSITION 2.1 ([Sh]): Let 

such that 

(2.3)  

o(~, f, k) = ,,-'/'o(,.o(~,,)f, k). 

~] E SL2(Z) 

ab(z, z) = cd(z, z) = 0(rood 2) for a / / .  E L, 

and suppose f satisJ~es 6(k(O))ro(k(O))f = (cos 0 - / s i n  O)-~12f for a/l O, where 

,r is a positive integer, and 

Then if c # 0 

[ cos0 sinO] 
k(O) L- sin 0 cos O J ' 

I 

J ~/~'8.(- ,i. o) 
6 ( k ( O ) )  = --~, V/ '~ ( ' - sgn  c~ ' )  " 11r 0 = 0. if 0 # 0, 

vq,(p-,)'~*c( c~ + d)-~/2 0('~z, f,  h) = 

where 

~_, c(h, k),O(~, I, k) 

We apply this Proposition to obtain transformation formulae for certain 0- 
functions. 

(1) 0,(z) = E T = - ~ . ( - ~ z ) .  

c(h, k). t = ~ - % o l ( L ) - '  Icl -"/2 
[olh + r,h + , / -  2<k,h + , / +  aIk, k/] 

V" r 
t 2c J " 

r E L / c L  
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Let n = 1, p = 1, q = 0; Q = 2, (z,y) = 2z!l; L = Z; f l (z )  = exp(-2~rz2). Then 

L" = Z / 2 ,  ~ = 1, and (~0(~,111)(~)  = ~ / ' e x p ( 2 ~ i ~ ' ~ ) .  We have  

O(Z, f l ,  O) -~- O(ro(6z)fl  , 0) -~- I) -1/4 E rO(ffz)/l(Z 3L 0) = E e(x2z) "~" 01(z)' 
tEL zEZ 

1 1 v_l/4 1 O(z, fx, ~) = O(ro(~z)fx, ~) = E ro(az)fx(x + ~) 
zEL 

zEZ 

Let ,,[0 , ]  
It satisfies (2.3), detQ = 2, and vol(L) = 1. Proposition 2.1 with f = fx yields 

kfiL'/L 

since c(0, k).t ~ = ~ , 1  and 

1 1 1 1)), 
,//~-I/~o(,Y~:, fl, ;) = ~ ~(;, k).,,o(z,,'1, k) = .~(o(z,,,1, o) - o(~, fl, 2 kEL'/L V~ 

since ~(�89 ' and ~(�89 ~ = v~' ~)'t~ = - ~ .  These relations can be rewritten in 

terms of 01 and 02 as follows: 

01(~2z) = i-1/2zl/22-1/2(O~(z) + O2(z)), 

0~("/2z) = i-1/2z'/22-'/2(Ol(z) - O2(z)). 

The transformation formulae under 

derived below, will be used in w We have 

hence 

zEZ zEZ 

= i-I/2zl/221/2(Eexp(2~i(2x)2z ) -4- ~] exp(2"n'i(9.x -I-I)2z)) 
zEZ zEZ 

= i-1/2zl/221/2 ~ exp(27riz2z) 
zEZ 
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and we get 
~l( ' r2z)  = ~1(Z)~-1/2Z1/221/2. 

For O(z) = ~1/401(z ) we obtain the formula 

0(r2z) = O(z)e-i~/4 (~zl) l/2, 

which can be rewritten using the notation (0.7) as follows: 

(2.4) (r20)(z)=$(z)- -v l /4($1(4z)§  

Similarly, 

02(r2z) = 02(~f2(4z)) 

= i-1/2(4z) l122-1/2(E exp(21riz 2. 4z) - E exp(2~ri(z + ~)2.4z)) 
zEZ zEZ 

zEZ zEZ 

and we get 
62(v2z)=i-1/2z1/221/2(61(4z) - -$2 (4z ) ) .  

For 01/2(z) = vl/402(z) we obtain 

(2.5) (~o~/~)(~)=~/'(o~(4~) -0~(4~)). 

(2) Let n = 3 ,  p = 2 ,  q = l ,  

~ - 2  
Q = 2  1 , 

0 

(Z,y) -~ tZQy; L = Z ( ~ Z ( ~  7,, f 3 ( X l , ~ 2 , x s )  = exp(-271"(2~ 2 --~x~ -3L2x32)). T h e n  

_ i i ! The group SLu(R) acts on R by g(xl, z2, xs) - (x 1, x 2, z3) where 

(2.6) [ ~ ~'~/2] [ ~, ~/2] 

and on 3(R s) by (Of)(x) = f(O-1(x)). 
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For z �9 ~ and g �9 SL2(R) we define 

(2.7) O(z, g, f ,  k) = 8(z, g f ,  k) 

where the 8-function in the right hand side was defined in (2.2). Then 

and 
o(z, g, A ,  o) = e(, ,  g.f,, o) = , , - ' / '  o(,-o(,,,)gf,, o) 

=~/'v E e[u(x~ - 4x,z,)]fa(V/-vg-'(x)) = O(z, g). 
z E Z  s 

The O-function introduced above is in fact Siegel's O-function [Si]. 

precisely, let [00] - 2  
S= 0 1 , 

- 2  0 

and f/(S) be the set of all real 3 x 3 matrices C such that  

s [ c ]  = ~ ~ s c  = s.  

More 

Since S has two positive and one negative eigenvalue, the group fl(S) ~, SO(2, 1), 

and it can be represented by 3 x 3 matrices as follows: 

(2.8) f~(S) = 2ac a d +  bc , where �9 SL2(R) . 
L c2 cd 

Let 7"/be the representation space of fl(S): 

= {tH = H, H > O, HS-*H = S}, 

where fl(S) acts by H --4 H[C]. 

Let z = u + iv 6 ~ ,  H 6 TI, and R = u S  + ivH. Following Siegel [Si], we define 

0(z,H) =,Z ~ 4R[h]] =,z ~ ~2.,',R, 
hf iZ  t hEZ t 

Let 

H e =  1 . 
0 
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It is easily seen that  HoS-aH0 = S, i.e. H0 �9 7"l. ~(S)  acts transitively on 7~, 

hence any H �9 7~ can be written as H = H0[C] for some C �9 ~(S).  Taking into 

account the isomorphism between S0(2,1) and PSL2(R) given by (2.8) we define 

for z �9 Y~ and g �9 SL2(R) (we slightly abuse notations using the same letter g 

for the corresponding elements of SL2(R) and S0(2, 1)) 

8( z ,g )  = 8(z ,  Ho[g-']) =v~ ~ e[u(h] - 4h,h3)l f3(v/-~g-~(h)) ,  
hEZ s 

where f3(hz, h2, ha) = exp(-2~r(2h~ + hi + 2hi)). 

Now let 

(2.9) e (~ ,g )  = , ' t '0 (~ ,g)  = v~/' ~ ~[u(hg - 4h,h~)l/,(v%-'(h)). 
hEZ s 

PROPOSITION 2.2: 

(i) e (Tz ,  g ) = J( .y ,z)O(z,g)  for any ~ �9 ro(4). 

(ii) O(z, Tgk ) = O(z,g)  for any 7 �9 SL2(Z) and 

I - s i n 0  [ cos8 eossjSinS] 2~r} k �9 K=,ft ,0 < 0 < o 

is even in ~. 

Proof: (i) This follows from Proposition 2.1 with tc = 1, see e.g. IN, D]. 

(ii) Let 7 �9 SL2(Z). Then 

O(z, 7g) = v3/4 ~ e[u(h~ -- 4hzhs)] f3(v~g-z(v- lh)) .  
h EZ 8 

Let z = 7-Zh. Then h = 7x and h~ - 4 h l h 3  = thSh = txtTSTx = x t S x  = 

z] - 4zzx3 since 7 �9 ~(S).  Since x �9 Z 3 we can rewrite 

O(z, Tg ) = v 3/" ~_~ e[u(x] - 4z,xa)lf3(vC'vg-Z(x)) = O(z,g). II 
zEZ n 

While O(z,g) is not an eigenform of the Laplacian in either z or g, it does 

satisfy the fundamental relation (see [Sh], [N]) 

(2.10) D,O(z,g) = 4A,/20(z, g) + ~ocz, g) 
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where D# is the Casimir operator on SL2(R), appropriately normalized (see 

[GGP], w This relation is responsible for Proposition 2.3 below. 

A Maass-Hecke form ~ can be viewed as being defined on G = SL2(R) and 

K-invariant on the right where 

[ c o s 0  SinS] 2~r}. 
K = { [ _ s i n 8  cos0J' 0 < _ 8 <  

in this setting is an eigenfunction of the Casimir operator D#: 

1 
D,~(g) = (-~ - (2r)~)~(g). 

PROPOSITION 2.3: Let ~ E U, ~ an even Maass-Hecke normalized cusp form, 

and 

(2.11) F(z) = [ ~(g )O( z, g )dg 
Jr \a 

(notice that if ~ is odd then F =- 0 since e is even by Proposition 2.2 (iii)). Then 

(i) F is an eigenfunction of A1/2. 

(ii) F e V +. 

Proof" (i) By integration by parts we have 

1 _ (2r)2)F(z)= ~rkGDg~,(g)O(z,g)dg = ~r\a 

and hence 

(2.12) 

~p(g)Dge(z,g)dg 

= fr\a4e(g)A1/,O(z,g)dg + f r \ar  3 0(z,g)dg 

= 4A1/2F(z ) + 4F(z), 

Notice that the eigenvalues of ~ and F are not equal but related. 

(ii) First we show that F E V. The transformation formula follows from the 

transformation formula for 0 (see Proposition 2.2 (i)). We check that F(z) is 
cuspidal at the cusp at oo (the other cusps are dealt with by similar argument). 

Since F is an eigenfunction of A1/2, it suffices to show that F(u + iv) is rapidly 

1 A,/~F(z) = ( - ~  - r ' )F(z).  
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decreasing as v ~ co. Now examination of the series (2.9) defining e (z ,  g) shows 

that 

O(z, g) - vs/ ' /a(O) 

is rapidly decreasing as v --, co (all terms in the series with h ~ 0 are rapidly 

decreasing). Since ~ is a cusp form we can infer the same after integration against 

~(g). Also 

fr ~(g)va/'/3(O)dg = 0 
\G 

since ~ is a Maass cusp form. Thus F(z)  is rapidly decreasing at the cusp at co. 

Let 

(2.13) 

Clearly 

(2.14) 

Thus 

\ a  

Mn(v) = f r ,G  ~ va/4f3(v/~g-lz)cP(g)dg" 
Z]--4XlXS~n 

(2.15) M.(v) = 0 i f n  ~ 2,3 (rood4). 

It follows as in the holomorphic case [Kol] that any Maass form from V whose 

Fourier coefficients satisfy (2.15) is an eigenfunction of L with elgenvalue 1, thus 

F E V  +. | 

3. G e o m e t r i c  ca l cu l a t ion  

We shall ex~mlne the behavior of 

I'Z (3.1) Mn(v) = ~(g)O(u "F iv, g)dg e(-nu)du. 
\a 

We know from general facts that Mn(u) is a Whittaker function in u- -we need 

it more precisely. We have seen in (2.15) that Mn(v) = 0 if n = 2,3 (rood4). 

Otherwise the solutions to z~ - 4ZlZa = n break up into h(n) orbits under the 
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action of r .  Let zO) , . . . ,  z(h(,=)) denote representatives for these orbits and let 

r=(~ ) = stabzu) in r .  We have 

M,,(v) = fv\a ~ v3/'fa(v/'vg-lz)q~ 
- Z~--4=IXS=n 

h(n) r 
(3.2) = us/4 ~ / ~ fs~/rug-]7-zz(J))~(g)dg 

h(.)  _ 

= v  3/' ~ [ fa(v/'ug-'z(j))~(g)dg �9 
Jr.(/)\G 

We consider now two basically different cases: in the first r= < 0 and in the second 

n>0. 

CASE (i): n <: 0. Let z = z2 be such that z 2 - 4zlza = n and 

Z3 

I = I ( z )  = [ fa(v/-vg-'z)cp(g)dg. 
Ja  

Then (3.2) becomes 

s(,=) 

(3.3) ~.,(,,) = ,:/'  ~ ~ z ( = ( j ~ )  = ,,8/, Z *x(=). 
j = l  u- =(j)n =EAn 

G ~, SL2(R) acts t rans i t i ve ly  on the hyperbo lo id  =zSz = n < 0, so we can f ind  a 

gl E G such that 

(3 .4)  g~'lz = �9 

Thus  

where 

(3.5) 

I =/G fa~v/v(glg)-lz)~~ 

= /afs(~-~g-; [!] ) ~(g)dg 

~(g)=~(glg). 
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Hence using the Cartan decomposition G = KA+K we have 

- ~ ~ ['])(J.l. ) x=~A l o  0 a 2 ~ r dkz .5(a)d-~ 

where $(a) = ='-a-' (see [L]). 
2 

Now from (3.5), r  is an eigenfunction of the Casimir operator with the same 

eigenvalue A as q0, hence 

(/:(g) = /K fKr 

is a spherical function (see [L]). So by a standard Uniqueness Theorem 

(3.7) ~(g) = ~(~)~(g) 

where w~(e) -- 1 and wx(g) is the standard spherical function with eigenvalue A. 

Clearly from (3.5) 

~(~) = r = ~(gl). (3.8) 

Thus 

(3.9) 

where 

[ 2 j  

If cz 2 + bxy + ay 2 is an integral quadratic form of discriminant n corresponding 

to the vector 
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then it is easily verified that 

gl= [I0 

satisfies (3.4). Hence 

(3.11) 

S. KATOK AND P. SARNAK 

~(g,) = ~ ( ~ )  

Isr. J. Math.  

0] 

~-'/' ' (  "~(z)) ~-, (3.13) M . ( v )  ,~ ~ e  -2'r~'"' 8,d-I ~ as co" 
zEA. 

Sin~ we k~ow ~.( , , )  = p(,0W_,/,,,.(4,flnl,,), we have 

(3.14) M. (v )  ~ p ( n ) e - 2 x l n l v t )  - 1 / 4  

which is consistent with (3.13). 

[ ' . 1  

= (2=)~ u sin u u ,,, (l+2=')udu 
J 0  

f e_Sft= = e -s'rt= oo e-le'rl=U=udu = ~ .  

dO 

a s  t ---~ o o  

Thus 

where w = ~ + i T E Yj is the Heegner point corresponding to the form az 2 - bzy + 

cy 2 which is F-equivalent to cz 2 + bzy + ay 2. Thus we have 

(3.12) M.(v )  = v 3 / ' Y ) ~ ( V ~ )  E "~(z). 
z E A .  

For later comparison we need only determine the asymptotics as v ~ co of 

y;~ (%/v_~.  In this way we can avoid evaluating the integral in (3.10). We have 
kv ~ / 
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CASE (ii): n > O. Consider 

I = [ f3(v~g-lxCj))~(g)dg. 
Jr m O) \ G  

This time we can find h E G such that 

h- ix( j)  _-- 

(3.15) 

where 

(3.16) r.~. = h-'r,t.h. 

211 

If we write 

(3.17) 

[*0 0 g = T/_I/2 ] k 

then a fundamental domain for rz~j)\G is { -oo  < ~ < oo, 1 _< ,7 _< ~2}. Then I 

becomes 

(3.19) 

r~,, is a discrete subgroup of the stahilizer of ,i.e. of { + [ o  , ~ ] ,a  > 0). 

There are two cases depending on whether r , u )  is infinite cyclic or essentially 

trivial: r , ( i  ) = {+1} (the first happens if n is not a square, the second if n is a 

square). In the first case we have 
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Let 

(3.20) 

S. KATOK AND P. SARNAK Isr. J. Math. 

r = ~(hg). 

is an eigenfunction of the Casimir operator and is right K-invariant. Also 

(3.21) 

Let 

Then 

-([o 
Thus H is uniquely determined by its values on [01 ~] in the decomposition 

[o �9 ~ ] [0 t ~] k. It also satisfies a second order differential equation in t. So in 

fact 

(3.23) ~ ( g )  = H ( O V ~ ( g )  + U~(g) 

where V~(g) is even in t and U~ is odd, and V~ is normalized by V~(e) = 1 

COx(e) = 0). In fact being even in t, Vx(e) = 1 uniquely determines Vx(g). We 
note that e -2wU"(uP+l) is even in t and hence 

(3.24) 

and 

From (3.15) it is easy to see that the last is 

where Cj is the geodesic cycle in r\~j corresponding to the form XlZ 2 +z2xy+xs y2 
and ~ is the hyperbolic arc lengh. Thus in this case we have from (3.2) and (3.24) 
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Again we investigate the asymptotics as v ~ cr 

F /; e-2~v"(2t '+l)v~(t )d  t = e -2~rv. e-4~rv.t' v~,(t)dt 
o o  ~ o  

Hence 

s ,.. e-2=v" e-41r dt 
~ 0  

e--21rvn 

= 2 ~v~-~n ~. 

as ~ . ~ l , . e o  (since Vx(0) = 1) 

(3.2s) 
M , ( v )  ... 

~I /4 e--27rvn 

j=l 
~j1/4e-21rvn 

Again this is consistent with the asymptotics of 

W11,ss,(,).ir(4~rlnlv ) ~ e-2" '"(4~rnv) ' / ' .  

In the case that Fxo) = {-I-1} (i.e. n is a square) (3.28) still holds and is derived 

in the same way except that C i is now a complete geodesic in f). 

4. Niwa's Lemma in the n o n - h o l o m o r p h i c  case  

PROPOSITION 4.1: Let z = u + iv, w = ~ + i71 E YJ; F( z )  E V be invariant 

under L and be a common eigen[unction o[ Tp2, p ~ 2, and /k l /2  with Fourier 
W'~ dudv coefficients p(n), and r  = f r0 ( , ) \~F(z )e (z ,  j ~--~-, where e ( z , w )  is the 

Siegel's O-function introduced in (2.9). Then 

(i) r  e U. 

(ii) It is a common eigeraCunction of Tp, and Ao. 
(iii) /.t'p(1) = O, then r - O. /t 'p(1) # O, then 

where ~ E U is the unique normalized Maass form with Fourier expan- 

sion 2 E : ,  a(n)W0,2,r(4~ny) cos(2~nx) having the same e igen~ues  as r 

whose Fourier coefficients a(n ) are defined from the following equation: 

= p(1) , , ( ,0 .  -~ 
n = l  n = l  
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Proof." By Proposition 2.2(ii), r = r  We calculate the Mellin trams- 
form of r 

Notice that O(z, iq) can be represented as a product of two 0-functions: 

Xl  

z E Z  a 

- ( E exp(2,ri(u + ivlzl) 
z2EZ 

�9 ( E I)I/2exp( - -  87ri'o, Z l X 3  - -  47rvtlZx2a 
z~ ,zaEZ 

4~_~_vz~ ~ 
7/2 J/ 

where 0~(z) = E~ezexp(2~ri(u + iv)z]) = E~,ezexp(2~izx~)is the usual O- 

function and 02(z,r~) = ~,z~,z~ez vtDexp(-8~iuzlxs - 4~rv~x~ -- : ~  
We use partial Poisson summation to obtain the following equality: 

1 4~r 0~(z,.) = ~ ~ e~p(- ~1~,~ + -~1~) �9 
ZhZS~Z 

Fo:. l~t Q(~.~.) = 8iu~,~3 + 4...~=~ + ~2s Then 

e~(~.,)=..~ ~ ~ exp(-..Q(~.~))=..'t~ ~ ](~,~), 
z l , z a E Z  z t , z a E Z  

where s /(x~, ~3) = e x p ( - ~ Q ( ~ , 5 )  - 2 . i * ~ ) d * .  
OO 

hence We have (2d~r # + ~ ] 2  = 4v~2t2 + 8iuxlt - ~, , 
v, vr t - 

](x,,~3) = / _ =  exp( - -((2V%t + ~ 

; itlzs 2uztzs ~ dtt = exp( 4~[z12x~ e x p ( -  ~'(t~ + + 
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where t~ = 2 v ~ i t  + ~Agy_~. We obtain then x/v~/ 

/(x,,  x3) = exp( - 4~(Iz12x~ + (u/2)21~r3).~ 1 exp(--~(t 2 + ))dr. 
v'? 2 ~ 2v/'Vr~ 00 

z 3 We have (t +/--~a-) 2 = t 2 + ~ - 4-~v' hence 

/(xx,=s) =exp( - 4~(Izl2=2 + (u/2)=l=s)) 
v~72 

// 1 exp(-  ~(t + ixs ~2 z 2 
2 ~  ~ ~-~-~, + 4-~ )d~ 

=2 ~vvexp ( _ 4~(Izl2x~ + (u/2)xlXSvv 2 + (xs/16))) 

=2__~exp ( _ 47r xs 2 
~ I  ~'~ + ~-I )" 

Thus 

I 4~ 41~)" 82(z,v)=v~ ~ ] ( z , , x s ) = ~  ~ exp(-vV--.-wlzxz+ 
zI,zaEZ zI,zsEZ 

Now we can rewrite 

,,, F(~)o(~,,v "-~-)v -~ 

- - -  ,~/'F(~)O~(~) 
2 o(4)\~ 

' ~41r~2[zlz zs 2~dudv~ ,+ld~ 
�9 ~ , , ~ . ~ , e ~ ( - (  +'7" J-~J'7 V' 

where we used that (F, 8) = 0. (In fact, 8 is unique non-cuspidal eigenform of 

A1/2. ) Let 

2v% 41" ~'= ----~--ZlZ + 

Then 

~'v~ 
"" lz ,z  + -~ .12 ,~  
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and we have 

~(8) -~- ~( ~o~176 ( ~Fo(4)\l T)l/4r(z)61(z)) 
v "~ ~ dudv 

1 s + 1 _,  2_~( /  
= ~ r ( - - ~ ) ( 4 ~ )  Jro(,)\~ t) l / 4 F ( z ) 6 1  (z ) )  

1 _ / s + 1 \  ='~l'('-~)'4z'+f!~-'~2*(jfFo(4)k. Vl/4F(z)Ol(Z) ) 
v ~ dudv 

Jro(4)\~ 

v ~ dudv 

There are 3 non-holomorphic Eisenstein series on r0(4) associated to each of 

3 cusps of r0(4)\~): {oo}, {0} and {]}; we denote them Eoo(z,s), E0(z,s) and 

E�89 (z, s), respectively. The fractional linear transformations 

o r 2 =  0 , r s =  2 

act on the set of cusps as follows: r2{0} = {oo}, "r2{oo} = {0}, r2( I} = {~},I 

rs{0} = {oo}, rs{oo} = {1}, rs{~} = {0}, and we have E0(z,s) = Eoo(r2-1z, s), 

~d E~(~, s) = E~(~3-*z, ~), where 

~Er** \to(4) 

Let 

[4x,z + zs[ 2 

Since B(z, s) is invariant under Fo(4) we have 

B(z,s) = ~E| + ~0E0(z,,) + ~E~(~, ~). 
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,,x,eZ ((4ZlV'~ + z~)" 
, ,~2v'r 

217 

where 

and 

First  we prove t h a t / 2  + Is = 1/2. We have 

/1 = L 0 ( , ) \ ~  vl/'F(Z)Ol(Z)E~176 ~/s + 1~ ~dudv = (F, 

2s+1/'2 ---- LoC4)\.~ vl/4F(z)Ol(z)E~ s q-2 1 ) dUdVv 2 

= (F, 0 .  Eo) = (r2oF,  0 .  Eo) = (F, r2r �9 Eo)), 

L s + 1~ du_dv 
2"+1/s = v'/4F(z)O1(z)E�89 (z, 

o(4)\~ 2 / v 2 

= (F,O.E�89 = (r2aF,  O. E�89 = (F, r2o'(0. E�89 

a(s) = 2"~r-q~r(S 2+-~z)((s + 1)(I1 + I2 + Is) 

/i= L vl/4F(z)Ol(z)Eoo(z, s+13 du--dv 
o(4)\~ 2 / v 2 ' 

I 2 =  2 - ~  vl/'F(z)Ol(z)E~ 
o(4)\~ 2 / v 2 ' 

Z~ = 2 - s - I  L v,/,F(z)O,(z)E�89 s + l~du__dv 
o ( 4 ) \ ~  2 / v 2 " 

and 

O. Eoo), 

Since Eoo(z, s) ~ v ~ as z .--* {co} and Eoo(z, s) ~ 0 as z approaches the cusps 

{0} and {�89 we have ~oo = 2~(2~). Now we m~ke change of ,~riables ~ = r2w, 

and let w = iT/, 7/~ co. Then asymptotically we have 

Im(r2w) o 
1, , ,ez [ 4 z l ( - � 8 9  + zs[ 2~ 

y-," 
t/~ ,,~ 2t/~ 

Since Eo(z,s) = Eoo(r~lz, s) ~ ( Imw)  ~ = 77 ~ as 7/ --, co, we obtain  S0 = 

2~(2s)2 -2~ Similarly, we obtain  asymptot ical ly that  B(r~lw,  s) ~ 2t/~176 

and hence $ !  = 2~(2s)2 -2~ 
2 

We can rewrite f t(s)  then as a sum of 3 terms: 
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Hence/2 + Is = (F, 2-'-1('r20.(0 �9 EO) 4- "/'20"(0" E � 8 9  

We have 

= 

E 0 ( ' ~  -)E~ ' s + l ) ) 2  
v rood 4 

z+v (z+v~ s + l ~  ~ ~ 
v mod 4 

We have 

o c Z  4- Y~  Z 4- V (4)'/'0, + = (-7-) = e~'~/~O~(~)) 

= ~ ( 0 ( ~ )  + 2"~/~0,/~(~)) 

where the notations are as in w 

Using the transformation formulae (2.4) and (2.5) we obtain 

(,-~0.(o. Eo))(z) 

=,-~(�88 ~ (o(.1 + e'"'/'O~/~(~llEoo(~,---4--,, T "  
~ m o d 4  

4 ~ ((~o)(~) + e'"'/~(,-~Ov~)(~))E~ ~( ), ~ +2 1~/ 
v m o d 4  

1 =i E vl/4((O'(4z) + 02(4z)1 4- ei'V/2(Ol(4Z) - -  02(4z)1) 
v m o d 4  

.E~(r2(r2z+v~ s+l~ 
t 4 J' 2 / 

__1" ~ooda V1/4((1 4- ei..i,)8,(4z ) 4- (1 - e"rz'12)82(4z)) 

" e " ~ [ r 2 [ - ' - - - i - - - ) '  2 j "" 

Similarly, 

,~ z _lzr2z+vx s4-1~ 
�9 ,rooSts t ~ ) ,  2 ' "  
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Let 

and 

E~. ) ,~ / / r2z+v~  s + l ~  2z 
= ~oot~2t - -W-- j , -V-J  = Eoo( -2uz + ~ ' 

= E ([4Zl.2ZT(_2VZT1)Xal2) ~'~ 
(4Zl,Za)=l 

I) 

= 2"+1 E (14(4Xl-//Z3)Z +zs[  2) ~ 
(4Zl,Za)=l 

s + l . )  
2 

Bi t ,  ) .~ / _ I / T 2 Z J c V •  8+1, ( 2z s - t - l )  
= ~o0[~3 I - - T - - j ,  - - V - j  = Eoo ( - 2 v  + 4)z + ~ 2 

I) 

=2"+1 E ([4(4xl_(v_2)zs)z+z3[2) "~ 
(4z l , z s )= l )  

Notice that E(I ~) = ~0b'~("-2), and Lavmod4 ~'~ "01b'(") = Eoo(z, ~). We rewrite 
2 

2-*-1('r2o'(0 �9 E0) + r2a(8 �9 El ) )  
1 = i E vl/4((I "{" r + (1 --  ei'"/2)O2(4z))E~ ") 
vmod4 

+ ((1 -- ei'"/2)O1(4z) + (1 -{- ei""/2lO2(4z))E~ ") 

= ~l,m~odVl/a2(o1(4Z)'1- 02(4z))E~ v, 

s+l~ 

mod 4 

Thus 12 + Is = 1/1, and we have established the following relation: 

fl(s) = 2"~r-h+-'-r(f-?-)i(s + 1)(11 + 12 + Is) 

^, _._-~_,s + 1,~, 1)~I1. = z ~r ' l ' ( - ' ~ ) r  + 

Now we compute 

I1 = fr f(z)Ol(z) E im(az)~.~ dudvv 2 
o(4)\~ ~,er~\r0(4) 

-- fr vX/4F(z)O---~v~.~ dudv ~\~ v 2 
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Since F(z) is an eigenfunction o f / k l / 2  with the eigenvalue ~ r 2 we can use 

the Fourier expansion (0.10) to obtain 

_,+1^,~,S + I~ . 
, z r i - - -5 - )11  

o o  

n = l  

( ~ ( ~  '(~ ~/o ~ _ ,  , , , , . -~_.  
-"-72 '+1r  = n,-1/~ ) v = ,~ W,,~,~r(4,~exp(-2,~)~ ~ 

Using a table integral ([GR] p. 860) we obtain 

n = l  

m _ . _ ,  , 1 i t ) r ( 2  1 oo . (n2 ) 

n=l 

1 i ~ ) r ( 2  1 oo o(n21 - - ~-'-I/'2v~r(~ + ~ + + i - i ~ ) ( ~  ~,_,/~ 
n=] .  

O0 

1 . , I _ i ~ ) ( E . ( . ~ ) ~  
- -  2v%l/ '~-~ + i +'~)r(~ + i no-1/~/, 

and hence 

3 1/4 -o-1/2 s 1 

oo 

z - i t ) c ( ,  + 1 ) ( E  p(n~) �9 ~(~+~ ~,_l,~). 
n = l  

Thus we have established the following formula: 

(4.1) ft(s) = 3v~Tr�88 0r -*- l /~r (  + ~ 

where 

(4.2) b(k)= E P(m2)n-lml/2" 
n~Ft=~ 
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The expression in (4.1) is recognized (see Proposition 1.3) to be the MeLlin 

transform of an even Maass cusp form of weight 0 with Fourier expansion 

6V~lr�88 ~ f f i l  b(n)Wo,2ir(41rny) cos(2z'nz), so ~ E U, i.e. part (i) is proved, and 

~b is an eigenfunction of A0 with eigenvalue -�88 - (2r) 2. We now use (4.2) to 

show that @ is an eigenform of Tp for p ~ 2. Once this is established, parts (ii) 

and (iii) follow from Proposition 1.2 together with (4.1). 

To do so we need to show that a function with Fourier expansion ~bl = 

2 ~ = 1  b(n)Wo,2ir(4~rny)cos(21rnx) is a common eigenfunction of all Hecke 

operators Tp providing F(z) is a common eigenfunction of all Hecke operators Tp2 

for p ~ 2. Let p ~ 2. Denoting the corresponding eigenvaiues by p(p) and using 

(1.3), we have the following relation between the Fourier coefficients of F(z): 

(4.3) 

and we want to show that the following relation holds for the Fourier coefficients 

a(k) of '~1: 

(4.4) = p / b(kp) + 

First, let (k,p) = 1. Then from (4.3) we get 

n --2 n 

and hence 

b ( k p ) =  pCm2)n-lm 
nm=kp 

= E P(rft2p2ln-XD'tl/2pl/2"~ E P(m2)rt-lP-lml/2 
n(mp)=kp (np) m=kp 

= E P(m2I(p-1/2p(P) - p-1 + p-1)n-lml/2 = p-1/2p(plb(k) ' 

and since in this case b(~) = 0 we obtain the required identity (4.4). Now let 

e ~ 0 be the maximal power such that pelk. Then 

b(k)=  p(m2p2i).-lp-c+ ml/2f/2 
n m = ~ -  j=O 
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Let Aj = p(m2p2j). From (4.3) we have 

2 n 

and hence we have 

A~ = p(m~p 2) = p-b,(p)p(m 2) - p-~/2O(m~) = p-~(~(p) - p-I/~)p(m~) 

Notice that for j > 2, 
(m2p2j-2.) -- 0, 

P 

and hence 

Aj = p(/'/22p 2j) = p(p2/Tt2p2j-2) = p-lf/(p)p(/n2p2j-2) - p-2p(r/22p2j-4), 

i.e. we have the following recurrence formula: 

Aj ~ -  p-l(~(p)Aj_ 1 - p-IAj_2). 

It is easily proved by induction that 

Aj = p-J Pj(p(p) )Ao = p-J Pj(p(p) )p(m2), 

and Pj  are polynomials in p(p) with coefficients depending on p - i :  

(4.5) Po=l,  P l ( z ) = x - p  -1, P 2 ( z ) = x 2 - x p - l - 1 , . . .  

satisfying the following recurrence formula: 

(4.6) P j+l (z)  "t- P j - I (Z)  = xPj(x). 

We can rewrite b(k) as follows: 

b ( k ) =  E E p-jPj(p(p))p(m2)n-lp-e+jml/2pi/2 
mn=pJ--w /ffiO 

= ( ~ p(-~2)n-'-~l/2)p-~ ~ Pi(~(P))P j/2 
nmf pt--w .,4=0 

= b p-e pj(p(p))tri/2. 
j=0 

Isr. J.  Math .  
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Similarly, 

e - 1  

i=0 
e + l  

r 

z 
j--O 

k 

j----1 

e + l  

Pi+ l (p(p) )p i/2 
j = O  i------1 

(4.8) = b p-~ Pi+,(p(p))p i/2 + Po(p(p))p -1/2 + PI(p(p))). 
i = 1  

e - 1  �9 

j = O  i = l  

We want to check that the expression (4.7) is equal to the sum of the expres- 

sions (4.8) and (4.9). By the formula (4.6) for j = 1 , . . . , e ,  P(P)Pi(P(P)) = 

Pi+I(P(P)) + Pi-I(P(P)), hence the sums in the corresponding expressions are 

equal. Also Po(p(p))p -1/2 +PI(p(p)) = p(P)Po(p(P)) by (4.5), and this completes 

the proof of the formula (4.4) for p r 2. Thus we proved that r is a common 

eigenfunction of Tp, p ~ 2, and/k  0. 

As follows from the Strong Multiplicity 1 Theorem for SLy(Z) (Proposition 

1.2), r is also an eigenfunction of T2; if p(1) = 0, r --- 0, if p(1) r 0 it is a 

multiple of a normalized Maass cusp form with Fourier expansion 
oo 

2 ~ .(.)w0,~,r(4~.y) cos(2~.x) 
n----1 

whose Fourier coefficients are defined from the following equation: 
oo 

With this the proof of Proposition 4.1 is complete. | 
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5. Proof of the Theorem 

Let ~ 6 U, ~ an even Maass-Hecke normalized cusp form, and 

(5.1) F(z) = / r  ~p(g)O(z,g)dg \a 

(notice that if ~0 is odd then F = 0 since O is even by Proposition 2.2 (iii)). Then 

by Proposition 2.3, F 6 V +, and it is an eigenfunction of A1/2. 

Now let {Fj}, j = 1, 2 , . . .  be an orthonormal basis for V + consisting of eigen- 

and AI/2 and also of L = r2a with eigenvalue 1. We may functions of Tp, 

expand 

(5.2) F(z) = ~(F, F~)roC,)F~(z). 
j=l 

Of course, since F has a fixed eigenvalue for Z~1/2, the sum in (5.2) is, in fact, 

finite. Now 

(5.3) 

fr dudv (F, Fj) = F(z)Fj(z) -~ 
o(4)\~ 

i.e. we have 

(5.6) FCz) = Z 3V"2z'l/'pj(1)(~o, ~o)Fj(z). 
Shlm(F~)=w 

According to Proposition 4.1 the inner integral gives 

(5.4) 3v/27rl14 pj(1)d;j(g) 

where Cj(g) is a Hecke normalized Maass cusp form in U. Thus 

(F, Fj) = 3V~ril"pj(1)@, ~j ) r  

(5.5) = ; 3 V ~ e / % 0 ) ( ~ , ~ )  if s~m(Fi) = ~, 
[ o otherwise, 
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Now compare the nth Fourier coefficient on both sides. We get 

(5.7) 
= 3V~lr 1/4 (~0, ~0) E PJ(1)PJ(n)Wl/"gn("), i'(4~lnlv)" 

Shlm(Fj)=~ 

Let v --* eo. By geometric calculation (3.13), the left hand side of (5.7) is 

asymptotic to 

v-~14 _-2,,,,I-1 ( *~(z)~, \'~__ / i f n  < O. 
zEA. 

The right hand side is asymptotic to 

3~/~"/4(~' ~) ( E P-~PJ(n)) (4"ln'v)-'l%-2'dnlt'" 
Shim(Fj)ffi~o 

Hence for n < 0 we get 

1 (~,~) E *9~(z) = 3V~Trl14[nls147rs1445/4 E pj(1)pj(n) 
zEAn Shim(Fj)~ 

-- 24~'[nls/4 E pj(1)pj(n). 
Shim(F i )--~o 

Similarly, for n > 0, as v ~ or, by geometric calculation (3.28) the left hand side 

of (5.7) is asymptotic to 

t)I/4 e--21vvn 

while the right hand side of (5.7) is asymptotic to 

Shlm(F~)=~o 

Hence for n > 0 we get 

1 

Shlm(Fj )----~ 

= 12~rl/2n3/4 E pj(1)pj(n).  | 
Shim(Fi)--~ 
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