THE ESTIMATION FROM ABOVE FOR THE TOPOLOGICAL ENTROPY OF A DIFFEOMORPHISM

Svetlana R. Katok

1. The topological entropy of a diffeomorphism of a compact manifold is always finite. It follows from the rough estimation [1] which is similar to the earlier estimation of the metric entropy of a diffeomorphism with respect to a smooth invariant measure [2]. Later an exact formula was proved in this case ([3]; the estimation from above belongs to G. A. Margulis). We prove a refined estimation from above for the topological entropy which is similar to the estimation of Margulis. Expressing the right-hand part of our estimation in terms of differential forms we get a relation between the topological entropy and spectral properties of the operator induced by a diffeomorphism in a space of differential forms.
2. Let M be a compact metric space, $T: M \rightarrow M$ a homeomorphism of M onto itself. Background material about the topological entropy can be found in [4]. We shall indicate several simple facts concerning the notion of conditional topological entropy which is introduced by M. Misiurewicz [5].

Definition. Let A, B be two open cover of the space M. The conditional topological entropy $h(A / B)$ of the cover A relative to the cover B is defined by the formula

$$
h(A / B)=\max _{B \in B} \log \left(N_{A}(B)\right)
$$

where $N_{A}(B)$ is the minimal number of elements of A which cover the ejement $B \in B$.

PROPOSITION 1. Suppose that $B<\mathcal{C}$, i.e., each element of \mathcal{C} is contained in an element of B. Then $h(A / B) \geq n(A / C)$.

PROPOSITION 2. $h(A \vee B) \leq h(B)+h(A / B)$.

PROOF: Let us denote the minimal number of elements of a subcover of the cover A by N_{A}. Further, let B^{\prime} be a subcover of B, which contains exactly N_{B} elements. Then

$$
\begin{gathered}
N_{A \vee B} \leq \sum_{B \in B} N_{A}(B) \leq N_{B} \max _{B \in B} N_{A}(B) \text { and } \\
h(A \vee B)=\log N_{A \vee B} \leq \log N_{B}+\log \max _{B \in B} N_{A}(B)=h(B)+h(A / B) .
\end{gathered}
$$

PROPOSITION 3. $h(T, A) \leq \lim _{n \rightarrow \infty} h\left(T^{n} A / A V \ldots V T^{n-1} A\right)$.
PROOF: Let us apply the previous proposition n times to the cover $A v \ldots \mathrm{~T}^{\mathrm{n}-\mathrm{I}} \mathrm{A}$. We have

$$
h\left(A \vee T A V \ldots V T^{n} A\right) \leq h(A)+h(T A / A)+\ldots+h\left(T^{n} A / A V \ldots V T^{n-1} A\right)
$$

By the definition of the topological entropy and proposition 1

$$
\begin{aligned}
h(T, A)=\overline{l i m}_{n \rightarrow \infty} \frac{h\left(A v \ldots v T^{n} A\right)}{n} & \leq \lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} h\left(T^{i} A / A \vee \ldots v T^{i-1} A\right)}{n}= \\
& =\lim _{n \rightarrow \infty} h\left(T^{n} A / A v \ldots v T^{n-1} A\right) .
\end{aligned}
$$

PROPOSITION 4. $h(T, A) \leq h(T A / A)$.
PROOF: $h\left(T^{i} A / A V \ldots V T^{i-1} A\right)=h\left(T A / A V T^{-1} A V \ldots V T^{-(i-1)} A\right) \leq h(T A / A)$.
('The last inequality follows from proposition 1). Combining this inequality with porposition 3 we obtain

$$
h(T, A) \leq \lim _{n \rightarrow \infty}\left(T^{n} A / A V \ldots V T^{n-1} A\right) \leq h(T A / A) .
$$

3. Let M be an m-dimensional smooth compact Riemannian manifold and $T: M \rightarrow M$ be a C^{l} diffeomorphism.

THEOREM. $\quad h(T) \leq \log \max _{x \in M} \max _{L \in T_{x}}\left|J\left(D T_{x} \mid L\right)\right|=a(T)$,
where J means the Jacobian and the inner maximum is taken over the set of all linear subspaces of the tangent space $T X_{x}$.

PROOF OF THE THEOREM: It is known [4] that $h(T)=\lim _{k \rightarrow \infty}\left(T, A_{k}\right)$
if A_{k} is an exhaustive sequence of covers i.e., the maximal diameter of elements of the covers A_{k} tends to zero as $k \rightarrow \infty$. We shall consider a special exhaustive sequence of covers having bounded multiplicities.

Let us choose a positive number ε_{0} and a finite set of points $x_{1}, \ldots, x_{s} M$ such that the mappings $\exp _{x_{i}}, i=1, \ldots, s$ are injective on ε_{0}-balls and the images of these balls cover M. Denote the maximal multiplicity of this cover by N. Let $\delta>0$ be so small that the images of $\left(\varepsilon_{0}-\delta\right)-b a l l s$ still cover M. Let us denote by $D_{y}(v, r)$ the ball in the tangent space $T y$ of radius r about $v \in \mathrm{~T}_{\mathrm{y}}^{\mathrm{M}}$. Let us fix a sequence of positive numbers $\delta_{\mathrm{k}} \rightarrow 0$, $\delta_{k}<\frac{\delta}{8}$ and cover each of the balls $D_{x_{i}}\left(0, \varepsilon_{0}-\delta\right), i=1, \ldots, s$ by a system of δ_{k}-balls with the maximal multiplicity bounded by a number R which does not depend on k and i. The images of these δ_{k}-balls under the action of the corresponding mappings $\exp _{x_{i}}$ form the cover A_{k} of M with the maximal multiplicity bounded by the number $C=N R$.

For every element $A \in A_{k}$ there exist $i \in\{l, \ldots, s\}$ and a tangent vector $v \in T_{X_{i}} M$ such that $\left(\exp _{x_{i}}\right)^{-l_{A}}=D_{X_{i}}\left(v, \delta_{k}\right)$. Let $\exp _{X_{i}} v=x_{A}$. Suppose that the number $\varepsilon_{0}>0$ is chosen so small that

$$
\begin{equation*}
D_{x_{A}}\left(0, \frac{\delta_{k}}{2}\right) \subset\left(\exp _{x_{A}}\right)^{-1} A \subset D_{x_{A}}\left(0,2 \delta_{k}\right) \tag{1}
\end{equation*}
$$

LEMMA. There exists a constant C ' such that for every integer n there exists a positive integer $k(n)$ such that for $k>k(n)$

$$
h\left(A_{k} / T^{n} A_{k}\right) \leq \alpha\left(T^{n}\right)+C^{\prime}
$$

PROOF OF THE LEMMA: Let us fix an integer n and choose k to provide the mapping T^{n} be sufficiently close to a linear mapping on each element A of the cover A_{k}. To be more precise, let us consider a set A and the corresponding point x_{A}. Condition (1) implies that:

$$
\left(\exp _{T^{n}} x_{A}\right)^{-1} B \subset\left(\exp _{T} n_{x_{A}}\right)^{-1} T^{n} \exp _{x_{A}}\left(D_{x_{A}}\left(0,2 \delta_{k}\right)\right) \text { where } B=T^{n} A
$$

We can choose the number k so large (and consequently δ_{k} so small) that

$$
\left(\exp _{T^{n}} x_{A}\right)^{-1} T^{n} \exp _{x_{A}}\left(D_{x_{A}}\left(0,2 \delta_{k}\right)\right) \subset D^{1} D_{x_{A}}\left(0,3 \delta_{k}\right)
$$

whence

$$
\begin{equation*}
\left(\exp _{\mathrm{T}^{n} \mathrm{X}_{\mathrm{A}}}\right)^{-1} \mathrm{~B} \subset \mathrm{DT}^{n^{D_{X}}}\left(0,3 \delta_{k}\right) \tag{2}
\end{equation*}
$$

Besides that, we shall claim the diameter of the set $D^{n} D_{X_{A}}\left(0,3 \delta_{k}\right)$ to be less than $\frac{\delta}{2}$. Condition (2) expresses our demand to the mapping $D T^{n}$ to be close to a linear map. Let us estimate now $h\left(A_{k} / T^{n} A_{k}\right)=\max _{B \in T^{n} A_{k}} \log N_{A_{k}}(B)$. Denote by B^{\prime} the set $\exp _{T} n_{x_{A}} U_{2} \delta_{k}\left(\left(\exp _{T} n_{x}\right)^{-1} B\right)$ where $U_{\alpha}(E)$ is an α-neighborhood of the set E. By (2) we have

$$
\begin{equation*}
\left(\exp _{T^{n} x_{A}}\right)^{-1} B^{\prime}=U_{2 \delta_{k}}\left(\left(\exp _{T^{n}} x_{A}\right)^{-1} B_{B}\right) \subset U_{2 \delta_{k}}\left(D T^{n_{D_{A}}}\left(0,3 \delta_{k}\right)\right) \tag{3}
\end{equation*}
$$

and the diameter of the set at the right hand part of this formula is less than δ.

Let $A^{\prime}=\left\{A^{\prime} \in A_{k}, A^{\prime} \cap B \neq \varnothing\right\}$. Obviously the inclusion $A^{\prime} \in A^{\prime}$ implies that $A^{\prime} \subset B^{\prime}$. Consequently,

$$
A^{\prime} \sum_{\in A^{\prime}} v\left(A^{\prime}\right) \leq C V\left(B^{\prime}\right)
$$

where v is a Riemannian volume on M and C is the maximal multiplicity of the cover A_{k}. Thus

$$
N_{A_{k}}(B) \leq\left|A^{\prime}\right| \leq C \frac{V\left(B^{\prime}\right)}{\min ^{\prime} \in A^{\prime}}
$$

Compactness of M and our choice of the number ε_{0} guarantee that the ratio $\frac{V\left(A^{\prime}\right)}{v\left(A^{\prime \prime}\right)}$ for every two elements $A^{\prime}, A^{\prime \prime} \in A_{k}$ bounded from positive constant. In particular $v\left(A^{\prime}\right)>C_{1} v(A)$ so that

$$
\begin{equation*}
N_{A_{k}}(B) \leq \frac{C}{C_{1}} \cdot \frac{v\left(B^{\prime}\right)}{v(A)} \tag{4}
\end{equation*}
$$

Now we shall estimate the volume $v\left(B^{\prime}\right)$. Let $\sigma: T_{x_{A}} M \rightarrow T_{T} n_{X_{A}} M$ be an isometry. Then $v=D T^{n} \cdot \sigma^{-1}: T_{x_{A}} M \rightarrow T_{x_{A}} M$ is a linear operator in $T_{x_{A}} M$. It can be represented in the form $V=U \cdot S$ where U is an isometric operator and S is a positively definite symmetric operator with eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, where $\lambda_{1} \geq \lambda_{2} \ldots \lambda_{1}>I \geq$ $\geq \lambda_{1+1} \geq \ldots \geq \lambda_{m}$. Condition (3) shows that there exist constants c_{2}, c_{3} such that

$$
\begin{equation*}
v\left(B^{\prime}\right) \leq c_{2} \bar{v}\left(\left(\exp _{T^{n}} X_{A}\right)^{-l_{B}}\right) \leq c_{3}\left(3 \delta_{k}\right)^{m} \prod_{i=1}^{m}\left(\frac{2}{3}+\lambda_{i}\right) \tag{5}
\end{equation*}
$$

where \bar{v} is a volume in a tangent space. On the other hand

$$
\begin{equation*}
v(A) \geq C_{4} \bar{v}\left(\left(\exp _{x_{A}}\right)^{-1} A\right) \geq C_{5} \delta_{k}^{m} \tag{6}
\end{equation*}
$$

Combining inequalities (4), (5), (6) we get an estimation for $N_{A_{k}}(B):$

$$
N_{A_{k}}(B) \leq C_{6} \prod_{i=1}^{m}\left(\frac{2}{3}+\lambda_{i}\right) \leq c_{7} \prod_{i=1}^{m} \lambda_{i}
$$

The value $\prod_{i=1}^{1} \lambda_{i}$ is equal to $\left|J\left(\left.D^{n} x\right|_{L}\right)\right|$ where L is a
subspace of $T_{n} x$ generated by the eigenvectors of S with eigenvalues $\lambda_{1}, \ldots, \lambda_{1}$. Thus we obtain the estimation

$$
h\left(A_{k} / T^{n} A_{k}\right) \leq \log \max _{x \in M} \max _{L \subset T_{x}}\left|J\left(\left.D T_{x}^{n}\right|_{L}\right)\right|+\log C_{7} .
$$

Lemma is proved.

Now we can finish the proof of the theorem. Let us fix a positive integer n and $\varepsilon>0$ and choose k according to the lemma. Moreover, k can be chosen so large that

$$
n h(T)=h\left(T^{n}\right)<h\left(T^{n}, A_{k}\right)+\varepsilon .
$$

Proposition 4.1 implies that
$h\left(T^{n}, A_{k}\right)=h\left(T^{-n}, A_{k}\right) \leq h\left(T^{-n} A_{k} / A_{k}\right)=h\left(A_{k} / T^{n} A_{k}\right)$, so that $n h(T)<h\left(A_{k} / T^{n} A_{k}\right)+\varepsilon$. By the lemma we have $h\left(A_{k} / T^{n} A_{k}\right) \leq a\left(T^{n}\right)+C^{\prime}$. But $a\left(T^{n}\right) \leq n a(T)$, that $h(T) \leq a(T)+\frac{C^{\prime}+\varepsilon}{n}$. Since n can be chosen arbitrary large, $h(T) \leq \alpha(T)$. The theorem is proved.
4. Let us denote by $\Omega^{k}(M)$ the space of all continuous realvalued differential antisymmetric k-forms on M with the norm

$$
\|\omega\|=\max _{x \in M} \max _{v_{1}, \ldots, v_{k} \in T_{x} M}\left|\omega\left(v_{1} \cdots v_{k}\right)\right|
$$

The diffeomorphism T induces a linear operator $T_{k}^{\#}: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$. Let us denote the direct sum $\underset{0}{\stackrel{m}{\oplus}} \Omega^{\mathrm{k}}(\mathrm{M})$ by $\Omega(\mathrm{M})$ and $\underset{\underset{0}{\oplus} \mathrm{~T}_{\mathrm{k}}^{\#}}{ }$ by $\mathrm{T}^{\#}$. The proof of the following proposition is routine.

PROPOSITION 5. $\quad \lim _{n \rightarrow \infty} \frac{\alpha\left(T^{n}\right)}{n}=\log s\left(T^{\#}\right)$ where $s\left(T^{\#}\right)$ is a spectral radius of the operator $T^{\#}$. The next fact follows immediately from our Theorem and proposition 5.

COROLLARY. $n(T) \leq \log s\left(T^{\#}\right)$.

Remark. K. Krzyzewski has generalized our result from diffeomorphisms to arbitrary C^{l} mappings of smooth manifolds. His proof used the definition of the topological entropy through ε-separated sets (see [4]).

REFERENCES

1. S. Ito, An estimate from above for an entropy and the topological entropy of a C^{1}-diffeomorphism, Proc. Japan Acad. 46:3(1970), 226-230.
2. A. G. Kušnirenko, An estimate from above for the entropy of classical dynamical system, Soviet Mathematics, Doklady, l6l, Nl, (1965), 360.
3. Ya. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32, N4, 1977.
4. E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR-Izvestija, $\underline{5}$, N2, 1971, 337-378.
5. M. Misiurewicz, Topological conditional entropy, Studia Mathematica, LV(1976), 175-200.

University of Maryland
College Park, MD 20742

