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i. The topological entropy of a diffeomorphism of a compact 

manifold is always finite. It follows from the rough estimation [i] 

which is similar to the earlier estimation of the metric entropy of a 

diffeomorphism with respect to a smooth invariant measure [2]. Later 

an exact formula was proved in this case ([3]; the estimation from 

above belongs to G. A. Margulis). We prove a refined estimation from 

above for the topological entropy which is similar to the estimation 

of Margulis. Expressing the right-hand part of our estimation in 

terms of differential forms we get a relation between the topological 

entropy and spectral properties of the operator induced by a diffeo- 

morphism in a space of differential forms. 

2. Let M be a compact metric space, T : M ~ M a homeo- 

morphism of M onto itself. Background material about the topolog- 

ical entropy can be found in [4]. We shall indicate several simple 

facts concerning the notion of conditional topological entropy which 

is introduced by M. Misiurewicz [5]. 

Definition. Let A,B be two open cover of the space M. The con- 

ditional topological entropy h(A/B) of the cover A relative to the 

cover B is defined by the formula 

h(A/B) = max Iog(NA(B)) 
B(B 

where NA(B) is the minimal number of elements of A which cover the 

element B ( B . 
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PROPOSITION !. Suppose that B < C, i.e., each element of C is 

contained in an element of B. Then h(A/B) { n(A/C). 

PROPOSITION 2. h(A vB) ~ h(B) + h(A/B). 

PROOF: Let us denote the minimal number of elements of a sub- 

cover of the cover A by N A. Further, let B' be a subcover of B, 

which contains exactly N B elements. Then 

NAy B ~ ~ NA(B) ~ N B max NA(B) and 
B(B' B(B 

h(AvB) = log NAy B ~ log N B + log max NA(B) : h(B) + h(A/B). 
B~B 

PROPOSITION 3. h(T,A) ~ lim h(TnA/Av...vTn-iA). 
n~ 

PROOF: Let us apply the previous proposition n times to the 

cover Av...vTn-IA. We have 

h(AvTAv...vTnA) ~ h(A) + h(TA/A) + ... + h(TnA/Av...vTn-IA). 

By the definition of the topological entropy and proposition i 

h(TiA/Av...vTi-iA) 
h(T,A) = ~ h(Av'''vTnA) ~ lim i=l = 

n n 
n ~ n~ 

: lim h(TnA/Av...vTn-IA). 
n~ 

PROPOSITION 4. h(T,A) ! h(TA/A). 

PROOF: h(TiA/Av...vTi-IA) = h(TAIAvT-IAv...vT-(i-I)A) ~ h(TA/A). 

(The last inequality follows from proposition i). Combining this 

inequality with porposition 3 we obtain 

h(T,A) ~ lim (TnA/Av...vTn-IA) ~ h(TA/A). 
n ~  
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3. Let M be an m-dimensional smooth compact Riemannian manifold 

and T : M ~ M be a C I diffeomorphism. 

THEOREM. h(T) ~ log max max IJ(DTxlL) I = e(T), 
xEM LeT M 

x 
where J means the Jacobian and the inner maximum is taken over the 

set of all linear subspaees of the tangent space T H. 
x 

PROOF OF THE THEOREM: It is known [4] that h(T) = lim (T,A k) 
k~= 

if A k is an exhaustive sequence of covers i.e., the maximal diameter 

of elements of the covers A k tends to zero as k ~ ~. We shall con- 

sider a special exhaustive sequence of covers having bounded multi- 

plicities. 

Let us choose a positive number s O and a finite set of points 

Xl,...,x s M such that the mappings exPx , i = l,...,s are injec- 
i 

tive on s0-balls and the images of these balls cover Mo Denote the 

maximal multiplicity of this cover by N. Let 8 > 0 be so small 

that the images of (s O -8)-balls still cover M. Let us denote by 

Dy(v,r) the ball in the tangent space TyM of radius r about 

v E TyM . Let us fix a sequence of positive numbers 8 k ~ 0, 

8 
8 k < [ and cover each of the balls Dxi(0,s 0 -8), i = l,...,s by a 

system of 8k-balls with the maximal multiplicity bounded by a number 

R which does not depend on k and i. The images of these 8k-balls 

under the action of the corresponding mappings exPx ° form the 
l 

cover ~ of M with the maximal multiplicity bounded by the number 

C : NR. 

For every element A E A k there exist i E{l,...,s} and a tan- 

gent vector v E Tx M such that (eXPx)-IA = Dx.(V,Sk). Let 
i i i 

eXPx v = x A. Suppose that the number s O > 0 is chosen so small that 
1 

8 k 
c (eXPxA)-iA c DxA(0,28k) (i) DXA(0 ,-~-) 



261 

LEMMA. There exists a constant C' such that for every integer n 

there exists a positive integer k(n) such that for k > k(n) 

h(Ak/TnA k) s e(T n) + C' 

PROOF OF THE LEMMA: Let us fix an integer n and choose k to 

provide the mapping T n be sufficiently close to a linear mapping 

on each element A of the cover A k. To be more precise, let us 

consider a set A and the corresponding point x A. Condition (i) 

implies that: 

(exPTnxA)-iB c (exPTnxA)-iTnexPxA(DXA(0,25k)) where B : TnA. 

We can choose the number k so large (and consequently 5 k so small) 

that 

(exPTnxA)-iTnexPxA(DXA(0,25k)) c DTnDxA(0,35k) 

whence 

(exPTnxA)-i B c DTnDxA(0,35 k) (2) 

Besides that, we shall claim the diameter of the set DTnD (0,38 k) 
x A 

8 
to be less than % . Condition (2) expresses our demand to the 

mapping DT n to be close to a linear map. Let us estimate now 

h(A~/TnA k) : max log NAk(B). Denote by B' the set 

B(TnA k 

exPTnxAU25k((exPTnx)-iB) where Us(E) is an s-neighborhood of the 

set E. By (2) we have 

(exPTnxA)-I B' = U25k((exPTnxA)-iB) c U25k(DTnDxA(0,35k) ) (3) 

and the diameter of the set at the right hand part of this formula is 

less than 8 . 

Let A' : {A' ( Ak, A' n B # ~} • Obviously the inclusion 

A' ( A' implies that A' c B' Consequently, 
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v(A') s C v(B') 
A'E A' 

where v is a Riemannian volume on M and C is the maximal multi- 

plicity of the cover A k. Thus 

v(B') 
NAk(B) ~ IA'I s C min v(A') " 

A'EA' 

Compactness of M and our choice of the number t 0 guarantee 

that the ratio v(A') v(A") for every two elements A', A" ~ A k bounded 

from positive constant. In particular v(A') > CIV(A) so that 

NA k C v(B') (4 
(B) ~ CI v(A) 

Now we shall estimate the volume v(B'). Let ~ : TxAM ~ TTnXA M 

be an isometry. Then v = DT n • a -I : T H ~ T H is a linear oper- 
x A x A 

ator in T M. It can be represented in the form V = U • S where U 
x A 

is an isometric operator and S is a positively definite symmetric 

operator with eigenvalues kl,...,km, where k I ~ k 2 ... k I > i 

~+i .... > " > km. Condition (3) shows that there exist constants 

C2, C 3 such that 

m 2 
v(B') ~ C2~((exPTnxA)-iB') S C3(36k )m N (7 + ki) (5 

i=l 

where v is a volume in a tangent space. On the other hand 

v(A) >_ C4v((eXPxA)-iA) >_ C56 k (6 

Combining inequalities (4), (5), (6) we get an estimation for 

NAk(B) : 
m m 

2 
NAk(B) S C6 S (~+ki) s C7 ~ k" " . :  .: l 

i 
The value F~ k. is equal to IJ(DTnx L) I. where L is a 

i=l l 
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subspace of TnX generated by the eigenvectors of S with eigen- 

values XI,...,X I Thus we obtain the estimation 

h(Ak/TnA k) s log max max IJ(DT~IL) I + log C 7 . 
x(M LeT M 

X 

Lemma is proved. 

Now we can finish the proof of the theorem. Let us fix a posi- 

tive integer n and s > 0 and choose k according to the lemma. 

Moreover, k can be chosen so large that 

nh(T) = h(T n) < h(Tn,Ak ) + s . 

Proposition 4.1 implies that 

h(Tn,Ak ) = h (T-n ,Ak  ) ~ h(T-nAk/Ak ) = h(Ak/TnAk) ,  so t h a t  

nh(T) < h(Ak/TnA k) + e. By the lemma we have h(Ak/TnA k) ~ a(T n) + C'. 

But e(T n) ~ n~(T), that h(T) ~ ~(T) + __C'+s Since n can be 
n 

chosen arbitrary large, h(T) ~ e(T). The theorem is proved. 

4. Let us denote by ~k(M) the space of all continuous real- 

valued differential antisymmetric k-forms on M with the norm 

[I~II : max max 
x(M Vl,...,Vk(TxM 

det(vl,...,Vk)=l 

i~(vl.-.vk)l 

The diffeomorphism T induces a linear operator T~ : ~k(M) + ~k(M). 

m m ~ T# 
Let us denote the direct sum ~ ~k(M) by ~(M) and • T by . 

0 0 

The proof of the following proposition is routine. 

PROPOSITION 5. lim e(Tn) - log s(T #) 
n 

n ~  

where s(T #) is a spectral radius of the operator T #. The next fact 

follows immediately from our Theorem and proposition 5. 

COROLLARY. n(T) ! log s(T#). 
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Remark. K. Krzyzewski has generalized our result from diffeo- 

morphisms to arbitrary C I mappings of smooth manifolds. His proof 

used the definition of the topological entropy through s-separated 

sets (see [4]). 
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