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Rigidity and flexibility of entropies of
boundary maps associated to Fuchsian groups

Adam Abrams, Svetlana Katok & Ilie Ugarcovici

(Recommended by Boris Hasselblatt)

Abstract. Given a closed, orientable surface of constant negative cur-
vature and genus g ∏ 2, we study the topological entropy and mea-
sure-theoretic entropy (with respect to a smooth invariant measure) of
generalized Bowen–Series boundary maps. Each such map is defined
for a particular fundamental polygon for the surface and a particular
multi-parameter.

We survey two strikingly diVerent recent results by the authors:
topological entropy is constant in this entire family (“rigidity”), while
measure-theoretic entropy varies within Teichmüller space, taking all
values (“flexibility”) between zero and a maximum. This maximum is
achieved on the surface that admits a regular fundamental (8g°4)-gon.
The rigidity proof uses conjugation to maps of constant slope, while
the flexibility proof—valid for a large set of multi-parameters—uses the
realization of geodesic flow as a special flow over the natural extension
of the boundary map. We obtain explicit formulas for both entropies.
We also present some new details pertaining to specific multi-parame-
ters and particular polygons.

1. Introduction

Any closed, orientable, compact surface S of constant negative curvature can be mod-
eled as S = °\D, whereD= { z 2C : |z| < 1} is the unit disk endowed with hyperbolic met-
ric 2 |dz|/(1° |z|2) and ° is a finitely generated Fuchsian group of the first kind acting
freely on D and isomorphic to º1(S). Recall that geodesics in this model are half-circles
or diameters orthogonal toS= @D, the circle at infinity. The geodesic flow e't onD is de-
fined as an R-action on the unit tangent bundle T 1D that moves a tangent vector along
the geodesic defined by this vector with unit speed. The geodesic flow e't onD descends
to the geodesic flow 't on the factor S = °\D via the canonical projection of the unit
tangent bundles. The orbits of the geodesic flow 't are oriented geodesics on S.

A surface S of genus g ∏ 2 admits an (8g °4)-sided fundamental polygon with a par-
ticular pairing of sides (1.1) obtained by cutting it with 2g closed geodesics that intersect
in pairs (g of them go around the “holes” of S and another g go around the “waists”; see
Figure 1). The existence of such a fundamental polygon F is an old result attributed to
Dehn, Fenchel, Nielsen, and Koebe [34, 21, 9]. Adler and Flatto [6, Appendix A] give a
careful proof of existence and special properties of F .
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Figure 1. Necklace of 2g geodesics on S forming the sides of F for g = 2.

We label the sides of F , which are geodesic segments, in a counterclockwise order by
numbers 1 ∑ k ∑ 8g °4 and label the vertices of F by Vk so that side k connects Vk to
Vk+1 (mod 8g °4) (this gives us a marking of the polygon).

We denote by Pk and Qk+1 the endpoints of the oriented infinite geodesic that ex-
tends side k to the circle at infinity S. The counter-clockwise order of endpoints on S is

P1,Q1,P2,Q2, . . . ,P8g°4,Q8g°4.

The identification of the sides of F is given by the side pairing rule

(1.1) æ(k) :=
Ω

4g °k mod (8g °4) if k is odd
2°k mod (8g °4) if k is even.

We denote by Tk : D! D the Möbius transformation pairing side k with side æ(k). The
group ° is generated by T1, ...,T8g°4.

Note that F is not regular in general but satisfies the following properties:

(1) the sides k and æ(k) have equal length;
(2) the angles at vertices k and æ(k)+1 add up to º.

We call fundamental (8g°4)-gonsF satisfying properties (1) and (2) canonical. Property
(2) implies the “extension condition”, which is crucial for our analysis: the extensions of
the sides of F do not intersect the interior of the tessellation ∞F , ∞ 2 ° (see Figure 2).
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1Figure 2. An irregular polygon with dotted lines showing side identi-
fications (left) and tessellation (right), genus 2.

The polygon F is related to a regular (8g °4)-gon Freg centered at the origin with all
interior angles equal to º

2 (see [6, Figure 1]) by the following construction. Let S = °\D
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be any compact surface of genus g ∏ 2 and Sreg = °reg\D be the surface of the same
genus admitting the regular fundamental polygon Freg. By the Fenchel–Nielsen Theo-
rem [32], there exists an orientation-preserving homeomorphism h from D onto D such
that °= h ±°reg ±h°1. The map h

ØØ
S is a homeomorphism of S preserving the order of

the points P [Q, where

P = {P1, ...,P8g°4} and Q = {Q1, ...,Q8g°4}.1

The sides of F are constructed by connecting h(Pk ) and h(Qk+1) by geodesics, where Pk
and Qk+1 correspond to Freg. On the other hand, for every marked canonical (8g °4)-
gon and the associated Fuchsian group °, by Euler’s formula the genus of °\D is g .

This construction gives a less common representation of the Teichmüller space T (g )
for g ∏ 2: it is the space of marked canonical (8g ° 4)-gons in the unit disk D up to
an isometry of D.2 The topology on the space of polygons is that Pk ! P if and only
if the lengths of all sides converge and the measures of all angles converge. It is well-
known [16, 17] that dim(T (g )) = 6g °6; the following is a heuristic argument for this fact
using (8g °4)-gons. The lengths of the identified pairs of sides are given by 4g °2 real
parameters, and 2g °1 parameters represent the angles since four angles at each vertex
are determined by one parameter. The dimension of the space SU (1,1) of isometries of
D is 3, so we have altogether (4g °2)+ (2g °1)°3 = 6g °6 parameters.

The boundary map. The main object of this paper is the multi-parameter family of gen-
eralized Bowen–Series boundary maps studied in [19, 2, 1, 4, 3]. For eachF 2 T (g ), recall
that side k of F is contained in the geodesic from Pk to Qk+1 and that Tk maps side k to
side æ(k); we define the boundary map f A :S!S by

(1.2) f A(x) = Tk (x) if x 2 [Ak , Ak+1),

where
A := {A1, A2, . . . , A8g°4} with Ak 2 [Pk ,Qk ].

When all Ak = Pk we denote the map by fP (see left of Figure 4 for its graph). Similarly, we
denote by fQ the case where all Ak =Qk . The maps fP and fQ were extensively studied
by Adler and Flatto in [6]; they call them the “Bowen–Series boundary maps”, although
Bowen and Series’ construction [13] used 4g -gons.

We study two dynamical invariants of f A : the topological entropy and the measure-
theoretic entropy with respect to a smooth (that is, Lebesgue-equivalent) measure. Our
two main results are rigidity of the topological entropy (Theorem 1.1) and flexibility of
the measure-theoretic entropy (Theorem 1.2).

Theorem 1.1 (Rigidity of topological entropy [3]). Let S = °\D be a surface of genus g ∏ 2
with fundamental polygon F 2 T (g ). For any A = {A1, . . . , A8g°4} with Ak 2 [Pk ,Qk ], the
map f A :S!S has topological entropy

(1.3) htop( f A) = log
°
4g °3+

q
(4g °3)2 °1

¢
.

Remark. The maps f A are not necessarily topologically conjugate since, according to [19],
the combinatorial structure of the orbits associated to the discontinuity points Ak can
diVer.

All f A are piecewise continuous and piecewise monotone. Some maps in this family
(such as those considered by Bowen and Series [13] and further studied by Adler and

1In some works h|S is also called a “boundary map”; this is diVerent from our usage.
2For a related representation of T (g ) as the space of marked canonical 4g -gons, see [29], following the

earlier work [35, 31].
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Flatto [6]) are Markov, and so the topological entropy can be calculated as the logarithm
of the maximal eigenvalue of a transition matrix [33, Theorem 7.13] in these cases. Not
all maps f A admit a Markov partition, but (1.3) holds for all A regardless. The proof of
Theorem 1.1 uses conjugation to maps of constant slope.

The flexibility result requires a restriction on the set of parameters, as defined below.
Such restrictions are common in previous work on boundary maps: [6] uses only A = P
and A =Q, [1] focuses on extremal parameters and their so-called duals, and [2] requires
short cycles.

Definition. A multi-parameter A = {A1, . . . , A8g°4} is extremal if for each k either Ak = Pk

or Ak = Qk . A multi-parameter A satisfies the cycle property if each Ak 2 (Pk ,Qk ) and
there exist positive integers mk ,nk such that f mk

A
(Tk Ak ) = f nk

A
(Tk°1 Ak ). If mk = nk = 1

then we say that A satisfies the short cycle property.

Notice that the above properties are preserved by the Fenchel-Nielsen homeomor-
phism h

ØØ
S (see [20]), so it makes sense to talk about a multi-parameter A satisfying these

properties in Teichmüller space T (g ).
If A is extremal or has short cycles, then f A admits a unique smooth invariant ergodic

measure µA obtained as a projection of the Liouville measure for geodesic flow.

Theorem 1.2 (Flexibility of measure-theoretic entropy [4]). Let S = °\D be a surface of
genus g ∏ 2, and let A be extremal or satisfy the short cycle property.3

(i) For each F 2 T (g ), the measure-theoretic entropy of f A with respect to its smooth
invariant probability measure µA is

(1.4) hµA
( f A) = º2(4g °4)

Perimeter(F )
=º · Area(F )

Perimeter(F )
.

(ii) Among all F 2 T (g ), the maximum value of hµA
( f A) is achieved on the surface

for which F is regular; this value is

H(g ) := hµreg

A
( f reg

A
) = º2(4g °4)

(8g °4)arccosh(1+2cos º
4g°2 )

.

(iii) For any value h 2 (0, H(g )] there exists F 2 T (g ) such that hµA
( f A) = h.

Remark. The formula (1.4) shows that the measure-theoretic entropy remains constant
under the change of the multi-parameter A within the considered class, so there is an
aspect of rigidity to Theorem 1.2 as well. We emphasize that hµA

( f A) is flexible in the
Teichmüller space.

The paper is organized as follows. Sections 2 and 3 summarize the proofs of The-
orems 1.1 and 1.2, respectively. Section 4.1 compares the two entropies (as was done
in [4]), and Sections 4.2 and 4.3 contain results about genus 2 examples that are pre-
sented here for the first time. Section 5 lists some conjectures and open questions.

2. Rigidity of topological entropy

The notion of topological entropy was introduced by Adler, Konheim, and McAn-
drew in [5]. Their definition used covers and applied to compact HausdorV spaces;
Dinaburg [14] and Bowen [11] gave definitions involving distance functions and sep-
arated sets, which are often more suitable for calculation. While these formulations of
topological entropy were originally intended for continuous maps acting on compact

3In [4] the main theorem is stated only for the classical Bowen–Series case A = P . As explained in [4,
Remark 5], the results also hold for A extremal or with short cycles, so we state the broader result here.
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spaces, Bowen’s definition can actually be applied to piecewise continuous, piecewise
monotone maps on an interval, as explained in [25]. The theory naturally extends to
maps of the circle, where piecewise monotonicity is understood to mean local mono-
tonicity or, equivalently, having a piecewise monotone lift to R.

In [26], Parry introduced two probability measures for topological Markov chains:
the first is the measure of maximal entropy and is commonly known as the “Parry mea-
sure”; the second measure is not shift-invariant but is uniformly expanding on cylin-
ders. In [27], Parry used this second measure to conjugate a piecewise monotone, piece-
wise continuous, strongly transitive interval map (not necessarily Markov) with positive
topological entropy to a map with constant slope. Alsedà, Llibre, and Misiurewicz [7, 8]
generalized this construction, obtaining semi-conjugacy for non-transitive maps. We
apply the results of [27, 8] to the family of maps f A , defining the second of Parry’s mea-
sures, which we denote by ΩA , in (2.2).

Our original proof of Theorem 1.1 in [3] used several symmetry properties of the regu-
lar fundamental polygon Freg and the conjugacy √P constructed for the boundary map
fP that is associated to the regular polygon. The main fact required for Theorem 1.1 is [3,
Lemma 15(a)], and in hindsight this can be proved without appealing to any symmetry.
The proof presented in this paper applies directly to any polygon F , without using the
Fenchel–Nielsen homeomorphism to relate the setup to the regular polygon. (Figures 4
and 5 were made using the regular polygon with genus g = 2.)

Step 1: topological entropy for extremal parameters. All f A(Pk ) and f A(Qk ) belong to
the set P [Q (see [19, Proposition 2.2], originally [6, Theorem 3.4]), so the partition of S
into intervals I1, . . . , I16g°8 given by

I2k°1 := [Pk ,Qk ], I2k := [Qk ,Pk+1], k = 1, . . . ,8g °4,

is a Markov partition for f A for every extremal A. Although they share a Markov partition,
each extremal A has its own transition matrix MA = (mi , j ) given by

(2.1) mi , j :=
Ω

1 if f A(Ii ) æ I j

0 otherwise.

The transition matrices MP and MQ for genus 2 are shown in Figure 3. A word ! =
(!0, . . . ,!n) in the alphabet {1, . . . ,16g ° 8} is called A-admissible if m!i ,!i+1 = 1 for i =
0, . . . ,n °1.

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Figure 3. Transition matrices MP (left) and MQ (right) for g = 2.
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We compute the maximal eigenvalue of the transition matrices for all extremal pa-
rameters and hence the topological entropy for these Markov cases [3, Proposition 7
and Corollary 8]:

• For any extremal multi-parameter A, the number of A-admissible words of
length n grows as approximately ∏n , where

∏= 4g °3+
q

(4g °3)2 °1,

and therefore the maximal eigenvalue of MA is exactly ∏.
• Thus htop( f A) = log∏ if A is extremal.

Step 2: conjugacy to a constant slope map. The following theorem combines several
results of [27, 8], stated here for circle maps (as in [24]) instead of interval maps:

Theorem 2.1. Given a piecewise monotone, piecewise continuous, topologically transi-
tive map f :S!S of positive topological entropy h > 0, there exists a unique (up to rota-
tion ofS) increasing homeomorphism√ :S!S conjugating f to a piecewise continuous
map with constant slope eh.

Although for each parameter A (not necessarily extremal) the map f A has, a priori,
its own conjugacy and its own corresponding map of constant slope, we are especially
interested in the cases A = P and A =Q.

• The map fP :S!S is piecewise monotone, piecewise continuous, topologically
transitive (see [13, Lemma 2.5]), and has positive topological entropy (by Step 1),
so by Theorem 2.1 there exists an increasing homeomorphism √P :S!S con-
jugating it to a map

`P :=√P ± fP ±√°1
P

with constant slope, see Figure 4. The map√P is unique up to rotation ofS, and
the slope of `P is exactly ∏= ehtop( fP ).

• The map fQ :S!S also satisfies the conditions of Theorem 2.1, so there exists
an increasing homeomorphism √Q : S! S, unique up to rotation of S, con-
jugating it to a map `Q of constant slope. By Step 1, `P and `Q have the same
slope.

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

1

Figure 4. Plots of fP (x) (left) and `P (x) (right) for g = 2.
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When f A is Markov—in particular when A is extremal—the construction of the conju-
gacy √A follows the classical work of Parry [27], also used in the proof of [8, Lemma 5.1]:
let∏, v be the maximal eigenpair for the transition matrix MA and define the measure ΩA
on the symbolic shift space X A for any non-empty cylinder C!

A
(see [3, Section 4] for pre-

cise definitions of X A and C!
A

) as

(2.2) ΩA

°
C (!0,...,!n )

A

¢
=

v!n

∏n .

One defines the push-forward measure Ω0
A

on S as

Ω0
A

(E) = ΩA

°
¡°1

A
(E)

¢
for Borel E ,

where¡A : X A !S is the symbolic coding map, that is,¡A(!) =T1
i=0 f °i

A
(I!i ). In Markov

cases, the conjugacy √A :S!Swith Smodeled as [°º,º] is then given by

(2.3) √A(x) :=°º+2º ·Ω0
A

°
[°º, x]

¢
.

It turns out that the maps √P and √Q thus constructed coincide:

Theorem 2.2 ([3, Theorem 12]). For all x 2S, √P (x) =√Q (x).

This is the most technically diYcult part of the argument. The proof is presented
in [3, Appendix A]. We also prove many symmetric properties of √P ([3, Propositions 14
and 15]) that are visually evident in [3, Figure 4].

Step 3: completion of the proof. Denote P 0
k =√P (Pk ) and Q 0

k =√P (Qk ). By construc-
tion, the map √P ±Tk ±√°1

P
is linear (with slope ∏) on [P 0

k ,P 0
k+1) since [Pk ,Pk+1) is the

interval where fP acts by Tk . The crucial fact that is necessary for our proof of rigidity is
that √P ±Tk ±√°1

P
is linear on the longer interval [P 0

k ,Q 0
k+1) æ [P 0

k ,P 0
k+1).

P12 Q12 P1 Q1 P2 Q2
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Q1

P2

Q2
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Q9
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Q4

P12
� Q12

� P1
� Q1

� P2
� Q2

�

P1
�

P2
�

P6
�

P7
�

Q8
�

Q9
�

Q3
�

Q4
�

Figure 5. Left: part of the graphs of fP (blue) and fQ (orange and
dashed). Right: `P (blue) and `Q (orange and dashed).
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To see this, note that √Q ± Tk ±√°1
Q

is linear on [Q 0
k ,Q 0

k+1) by construction and that,

by Theorem 2.2, √P = √Q . Thus √P ±Tk ±√°1
P

= √Q ±Tk ±√°1
Q

is linear on [P 0
k ,P 0

k+1][
[Q 0

k ,Q 0
k+1] = [P 0

k ,Q 0
k+1]. See Figure 5.

Proof of Theorem 1.1. Let A = {A1, ..., A8g°4} with each Ak 2 [Pk ,Qk ] be arbitrary. For
each k, the map

√P ± f A ±√°1
P

(note the use of √P with f A) is linear with slope ∏ on [A0
k , A0

k+1) because √P ±Tk ±√°1
P

is linear on [A0
k , A0

k+1) Ω [P 0
k ,Q 0

k+1). Thus on whole set
S8g°6

k=1 [A0
k , A0

k+1) = S the map
√P ± f A ±√

°1
P

is piecewise linear with slope ∏, and so, by [24, Theorem 30], the topological
entropy of f A is log∏. ⇤

3. Flexibility of measure-theoretic entropy

A few years ago, Anatole Katok suggested a new area of research—or, at the very least,
a new viewpoint—called the “flexibility program”, which can be broadly formulated as
follows: under properly understood general restrictions, within a fixed class of smooth
dynamical systems, some dynamical invariants take arbitrary values. Taking this point
of view, it is natural to ask how the measure-theoretic entropy hµP

( fP ) changes in T (g ).
Theorem 1.2 addresses this question, and we sketch its proof in this section.

Step 1: the smooth invariant measure. If A is extremal (e.g., A = P ) or has short cycles,
then the smooth invariant measure µA for f A can be described as two-step projection of
the Liouville measure for the geodesic flow [2, 1].

• On the unit tangent bundle T 1D, parameterized by (x, y,µ) with x + i y 2 D the
base-point of tangent vector and µ its angle with the real axis, the Liouville vol-
ume

d!= 4dx dy dµ
(1°x2 ° y2)2

comes from the hyperbolic measure on D and is invariant under geodesic flow.
• The measure

d∫= |du| |dw |
|u °w |2

is a smooth measure on the space of oriented geodesics on D (modeled as
{(u, w) 2 S£S : u 6= w}) and is preserved by Möbius transformations.4 Some-
times called “geodesic current”, this measure was most probably first consid-
ered by E. Hopf [18] and was later used by Sullivan [30], Bonahon [10], Adler–
Flatto [6], and the current authors [19, 2].

• Using coordinates (u, w, s) on T 1D, where s is arclength along a geodesic, in-
stead of coordinates (x, y,µ), the measure

dm = d∫ds

is also preserved by geodesic flow and is a multiple of the Liouville volume d!.
Specifically, dm = 1

2 d! (see [10, Appendix A2]).5

4The formula d∫ = |du||dw |/|u °w |2 is used when u, w 2 {z 2 C : |z| = 1}. If we consider u, w 2 (°º,º] as
arguments, then d∫= dudw/(2°2cos(u °w)).

5The constant relating d! and dm was given incorrectly as 1/4 in [6, page 250]. Following that, 1/4 was
used in [2, Proposition 10.1].
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Generalizing Adler and Flatto’s “rectilinear map” from [6], we define the map
FA :S£S\¢!S£S\¢, where ¢ is the diagonal {(w, w) : w 2S }, by

(3.1) FA(u, w) = (Tk u,Tk w) if w 2 [Ak , Ak+1).

In [19], the authors showed that FA admits a global attractor ≠A with finite rectangular
structure if A = P or if A satisfies the short cycle property. Adler and Flatto had previously
shown that FP has as an invariant domain with finite rectangular structure (which we
call≠P , see Figure 6), and this was extended to FA for all extremal parameters in [1]. The
restriction of FA to≠A is the natural extension map of f A ; we will often denote FA

ØØ
≠A

by

simply FA .

• The normalized measure

d∫A := d∫R
≠A

d∫

is by construction a smooth invariant probability measure for FA .

Because f A is a factor of FA (projecting on the second coordinate), its smooth invariant
probability measure µA is obtained as a projection of ∫A .

Step 2: formula for the entropy. The geodesic flow on S can be realized as a special flow
over a cross-section that is parametrized by ≠A , and the first return map to this cross-
section acts exactly as FA :≠A !≠A (see [2, Section 4] for short cycles and [1, Section 2.2]
for extremal). Using this realization along with Abramov’s formula and the Ambrose–
Kakutani theorem, we have from [2, Proposition 10.1] (with a corrected constant) that

h∫A
(FA) = º2(4g °4)R

≠A
d∫

.

Since FA is the natural extension of f A , the entropies h∫A
(FA) and hµA

( f A) are equal, and
since Area(F ) = 2º(2g °2) by the Gauss–Bonnet formula, we have

(3.2) hµA
( f A) =º · Area(F )R

≠A
d∫

.

The integral
R
≠A

d∫ can be explicitly computed using the finite rectangular structure of
≠A , but this does not easily relate to the (hyperbolic) perimeter of F .

Adler–Flatto [6] introduced another map, called the “curvilinear map” (or “geometric
map” in [2]): denoting by uw the geodesic from u to w , the map is defined on the set

≠geo := { (u, w) : uw intersects F } Ω S£S\¢

(shown in Figure 6) and is given by

Fgeo(u, w) = (Tk u,Tk w) if uw exits F through side k.

There is a bijection ©A : ≠geo ! ≠A that acts piecewise by Möbius transformations
(see [2, Proposition 3.4] for short cycles and [1, Proposition 12] for extremal) and since
Möbius transformations preserve the measure ∫, it follows that

(3.3)
Z

≠A

d∫=
Z

≠geo

d∫.

Given (3.3), we now want to show that
R
≠geo

d∫ is equal to the (hyperbolic) perimeter
of F . We use the following fact proved by F. Bonahon [10, Appendix A3]:
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Q11

Q12

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

P11

P12

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Figure 6. Arithmetic set≠P in striped red, geometric set≠geo in solid
blue (for an irregular polygon with g = 2).

• For any oriented geodesic segment s on D,
Z

™+(s)
d∫= length(s),

where™+(s) is the set of oriented geodesics intersecting s with the oriented an-
gle at the intersection between 0 and º.

The domain ≠geo of the geometric map Fgeo can be decomposed as ≠geo = S8g°4
k=1 Gk

using the “strips”

Gk =
©

(u, w) : uw exits F through side k
™
=™+(side k)

(these are shown in [2, Figure 3]). Thus from Bohanon’s result we immediately get
Z

≠geo

d∫=
8g°4X

k=1

Z

Gk

d∫=
8g°4X

k=1
length(side k) = Perimeter(F ).

Combining this with (3.3), one can replace
R
≠A

d∫ by the perimeter of F in the denomi-
nator of (3.2), and we obtain the formula (1.4), that is,

hµA
( f A) = º2(4g °4)

Perimeter(F )
=º · Area(F )

Perimeter(F )
.

Step 3: maximum of the entropy. To prove that Theorem 1.2(ii) follows from (1.4) we
only need to show that for each genus g the perimeter of F in T (g ) is minimized on the
regular polygon.

• Isoareal Inequality: among all hyperbolic polygons with a given area and number
of sides, the regular polygon has the smallest perimeter. More precisely, Ku-Ku-
Zhang prove [22, Theorem 1.2(a)] that for a hyperbolic n-gon Pn ,

Perimeter(Pn)2 ∏ 4dnArea(Pn), where dn = n tan
µ

Area(Pn)
2n

∂
,

with equality achieved on a regular polygon. The Isoareal Inequality follows im-
mediately: Area(Pn) and n are constant, so the right-hand side 4dnArea(Pn) is
constant and thus the perimeter is minimized when Pn is regular.
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• In our setting, F = Pn with n = 8g °4, and Area(F ) = 2º(2g °2) is constant in
T (g ), so the Isoareal Inequality implies that the perimeter of F is minimized
when F is regular.

The expression for the maximum value H(g ) in Theorem 1.2 comes directly from (1.4),
with

arccosh
°
1+2cos º

4g°2

¢

being the length of a single side of the regular (8g °4)-gon. This completes the proof of
Theorem 1.2(ii).

Step 4: flexibility of the entropy. The spaceT (g ) is homeomorphic toR6g°6, and a stan-
dard way to parametrize T (g ) is through Fenchel–Nielsen coordinates (see the classical
manuscript recently published in [15]). The surface S can be decomposed into 2g ° 2
pairs of pants by 3g °3 non-intersecting closed geodesics; this decomposition is shown
for g = 2 in the bottom of Figure 7 (for genus 3, see [4, Figure 4]). The lengths of these
geodesics can be manipulated independently (they form 3g ° 3 of the 6g ° 6 coordi-
nates) and can take arbitrarily large values. We take one of these geodesics to also be a
geodesic from the necklace described in Section 1 that corresponds to one entire side
of F (this shared geodesic is on the far right in both parts of Figure 7). Since the length
of this side—one of the Fenchel–Nielsen coordinates—can be made arbitrarily large, the
perimeter of F can also be made arbitrarily large, which by (1.4) means that hµA

( f A) can
be made arbitrarily small.

Figure 7. Necklace of 2g geodesics on S forming the sides of F (top)
and decomposition of S into 2g ° 2 pairs of pants by 3g ° 3 non-
intersecting geodesics (bottom) for g = 2.

Using the topology on the Teichmüller space T (g ) as the space of marked canonical
(8g°4)-gons, we see that the perimeter ofF varies continuously within T (g ). From (1.4)
we conclude the continuity of the entropy hµA

( f A) within T (g ). By the Intermediate
Value Theorem, hµA

( f A) must take on all values between 0 and its maximum; this is
precisely the claim of Theorem 1.2(iii).
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4. Additional results

4.1. Comparison of entropies. By the Variational Principle, the measure-theoretic en-
tropy of a map can never exceed its topological entropy. For some classical systems, the
Lebesgue measure is both a smooth invariant measure and also the measure of maximal
entropy, but the boundary maps f A :S!S provide examples where the ergodic smooth
invariant probability measure is not the measure of maximal entropy.

2 3 4 5 6 7 8 9 10

genus

0

1

2

3

4

en
tr
op

ie
s

htop(fA)

hµreg

A
(f reg

A
)

Figure 8. Topological entropy and measure-theoretic entropy for dif-
ferent genera.

Proposition 4.1 ([4, Corollary 7]). If A is extremal or has short cycles, the measure-theo-
retic entropy of f A with respect to its smooth invariant measure µA is strictly less than the
topological entropy of f A.

From the expression for H(g ) in Theorem 1.2(ii), the maximum possible value of the
measure-theoretic entropy with respect to the smooth invariant measure is

hµreg

A
( f reg

A
) = º2(4g °4)

(8g°4)arccosh(1+2cos º
4g°2 )

,

and we show in [4, Section 4] that this is strictly larger than the topological entropy

htop( f A) = log
°
4g °3+

q
(4g °3)2 °1

¢

for all g ∏ 2. See Figure 8 for a graph of these values.

4.2. Examples of other Markov partitions. For generic A, the map f A is not necessarily
Markov. However, a Markov structure does occur when the right and left orbits of Ak ,
that is,

{ lim
"!0+

f n
A

(Ak +")}1n=0 and { lim
"!0+

f n
A

(Ak °")}1n=0,

are eventually periodic for each Ak (these are called “upper” and “lower” orbits in [19]).
For extremal A, this is immediate. If A has the cycle property, it is suYcient that the
“cycle ends” are discontinuity points, as stated for short cycles in [2, Proposition 7.2].

When f A is Markov, the maximal eigenvalue of the associated transition matrix must
be ∏ = 4g °3+

p
(4g °3)2 °1 because we know that htop( f A) is the log of this value for

all parameters A. Given a Markov partition {I1, ..., In} with n elements, the entries of the
associated n £n transition matrix are described in (2.1). In this section, we give four
examples of maps and transition matrices with, respectively,

(a) n = 2(8g °4), (b) n = 8g °4, (c) n = 3(8g °4), (d) n = 5
2 (8g °4)

partition elements.
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Figure 9 shows these matrices for genus 2 (each white cell is a 0 in the matrix, and
each black cell is a 1); each matrix is for a diVerent map f A and uses a diVerent parti-
tion {I1, ..., In}, but all have the same maximal eigenvalue.

1

24

1 24

(a) A = P

1

12

1 12

(b) A = PQ

1

36

1 36

(c) Ak = midpoint of [Pk, Qk]

1

30

1 30

(d) “Uneven” A

Figure 9. Four transition matrices with maximal eigenvalue 5+2
p

6.

(a) Let Ak = Pk for all k. As described in [6, 4] and Step 1 of Section 2, the partition
{I1, . . . , I16g°8} with

I2k°1 := [Pk ,Qk ], I2k := [Qk ,Pk+1], k = 1, . . . ,8g °4,

is a Markov partition for fP (and, in fact, for every extremal A). For g = 2, the matrices
MP and MQ for this partition are shown in Figure 3, and MP is shown again in Figure 9(a)
as a colored grid.

(b) For A = PQ = {P1,Q2,P3,Q4, ..., } we could use the partition {I1, . . . , I16g°8} from (a)
and [3], but the coarser partition {I1, ..., I8g°4} with

Ik = [Pk ,Qk+1] for odd k, Ik = [Qk ,Pk+1] for even k

is also Markov for fPQ . Using this partition we get a much smaller transition matrix (it
is (8g ° 4) £ (8g ° 4) rather than (16g ° 8) £ (16g ° 8)) with exactly the same maximal
eigenvalue. For g = 2, this 12£12 matrix is shown in Figure 9(b).

(c) Let Ak be the midpoint of [Pk ,Qk ] for each k. As described in [2, Sections 7-8], this
f A has a Markov partition {I1, ..., I24g°12} with

I3k°2 := [Ak , ], I3k°1 := [Ck ,Bk ], I3k := [Bk , Ak+1], k = 1, . . . ,8g °4,
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where

Bk := Tæ(k°1) Aæ(k°1) and Ck := Tæ(k+1) Aæ(k+1)+1

are the first iterates in the right and left orbits. For g = 2, the corresponding 36£ 36
transition matrix is shown in Figure 9(c).

(d) For odd k let Ak be the midpoint of [Pk ,Qk ], and for even k let Ak be the image
under Tæ(k)+1 ±Tk of the midpoint of [Pk+1,Qk+1]. In [2, Section 8, Example 3] we show
that this f A has a partition with 3(8g°4) intervals following the same construction as (c).
However, for this particular A we have that Ck+1 = Bk+1 if k is odd, which means that the
intervals I5 = I3(2)°1 = [C2,B2], I11 = I3(4)°1 = [C4,B4], etc., are trivial. These comprise
4g °2 of the 24g °12 intervals.

Thus we can make a Markov partition for this f A using only 20g °10 intervals. Explic-
itly, we use {I1, ..., I20g°10} given by

I5k°4 := [Ak ,Ck ], I5k°3 := [Ck ,Bk ], I5k°2 := [Bk , Ak+1],

I5k°1 := [Ak+1,Bk+1], I5k := [Bk+1, Ak+2], k = 1, . . . ,4g °2.

For g = 2, the corresponding 30£30 transition matrix is shown in Figure 9(d).

4.3. Teichmüller parameters for genus 2. We now provide some geometric results spe-
cific to genus 2. We use the parameterization of T (2) given by Maskit in [23]:

Theorem 4.2 ([23, Theorem 8.1]). For any (Æ,Ø,∞,æ,ø,Ω) 2R6, define

µ := arccosh(cothØcoshæcoshø+ sinhæsinhø),

± := arccoth
≥cosh∞coshµ°cothÆsinh∞sinhµ° sinhΩ sinhæ

coshΩ coshæ

¥
,

≤ := arccosh(cothµsinhÆsinh∞°coshÆcosh∞),

¡ := arccosh
≥sinhØsinh±(sinhΩ sinhø+cosh∞)

coshΩ coshø
°coshØcosh±

¥
.

(4.1)

There exists a real-analytic diVeomorphism between

©
(Æ,Ø,∞,æ,ø,Ω) 2R6 :Æ> 0,Ø> 0,∞> 0,±> 0,≤> 0

™

and the Teichmüller space T (2). (Note that ±> 0 and ≤> 0 implicitly are requirements on
Æ,Ø,∞,æ,ø,Ω and that the stated inequalities imply ¡> 0.)

In [23], µ and ± are defined geometrically and are then proven to satisfy [23, equa-
tion (12)], that is,

coth±= cosh∞coshµ°cothÆsinh∞sinhµ° sinhæsinhΩ
coshæcoshΩ

,

when all parameters satisfy certain necessary inequalities. Here, we are defining µ and ±
by (4.1) and making ± > 0 a requirement of valid parameters. This condition ± > 0 is
equivalent to the inequality [23, equation (13)]. Maskit does not explicitly use ≤ or ¡
at all, but algebraic manipulation shows that [23, equation (3)] is equivalent to ≤ > 0.
Additionally, the inclusion of ≤ and¡ allows for the concise statement of Proposition 4.3.
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The correspondence between parameters (Æ,Ø,∞,æ,ø,Ω) and polygonsF can be made
explicit as follows. Let

A = X A

µ
eÆ 0
0 e°Æ

∂
X °1

A with X A =
µ

i 1
1 i

∂µ
1 1

eµ e°µ

∂
,

B = XB

µ
eØ 0
0 e°Ø

∂
X °1

B with XB =
µ

i 1
1 i

∂µ
eæ eæ

e°ø °eø

∂
,

C = XC

µ
e∞ 0
0 e°∞

∂
X °1

C with XC =
µ

i 1
1 i

∂
,

D = XD

µ
e± 0
0 e°±

∂
X °1

D with XD =
µ

i 1
1 i

∂µ
eæ+∞ eæ+∞

°eΩ e°Ω

∂
,

E = A°1C°1, and F = D°1B°1 (the eigenvalues of E and F are, respectively, e±≤ and e±¡,
but the matrices that diagonalize E and F do not seem to have simple expressions). Then
the sides of the polygon F lie along axes of Möbius transformations that are products of
these matrices; explicitly, if sk is the transformation for which Pk is the repelling fixed
point and Qk+1 is the attracting fixed point, then

s1 =C°1D°1C , s2 = AC , s3 = AF°1 A°1, s4 = A°1,

s5 = F, s6 = E°1, s7 = D, s8 = DED°1,

s9 = B°1D°1, s10 = B°1 AB , s11 = s°1
1 B , s12 =C°1s°1

10 .

These expressions for sk are from [4, Appendix] (called “Sk ” there), and the expressions
for A,B ,C ,D are newly-discovered formulas that are easily shown to be equivalent to the
original descriptions of the matrices in [23, Theorem 5.1].

Proposition 4.3. Let (Æ,Ø,∞,æ,ø,Ω) be Maskit’s parameters for a point in T (2), and let F
be the associated fundamental polygon. Then

Perimeter(F ) = 4(Æ+±+≤+¡)

with ±,≤,¡ defined by (4.1). This immediately implies hµA
( f A) =º2/(Æ+±+≤+¡).

Proof. For a Möbius transformation M 2 °, the axis of M on D projects to a closed geo-
desic on °\D, and the length of this closed geodesic is 2arccosh | tr(M)/2|, where tr(M)
is the trace of M .

Sides 1,4,7,10 of F are closed geodesics on the surface S, while the other sides come
in pairs: the closed geodesic along the axis of sk for k › {1,4,7,10} consists of side k and
side k +6.

The eigenvalues of A,B ,C ,D,E ,F are e±Æ,e±Ø,e±∞,e±±,e±≤,e±¡, respectively. Thus
the length of side 1 is

2arccosh | tr(s1)/2| = 2arccosh | tr(C°1D°1C )/2| = 2arccosh | tr(D°1)/2|

= 2arccosh | 1
2 (e±+e°±)| = 2arccosh |cosh±| = 2±

and the combined length of sides 2 and 8 is

2arccosh | tr(s2)/2| = 2arccosh | tr(AC )/2| = 2arccosh | tr(C A)/2|
= 2arccosh | tr(E°1)/2| = 2arccosh | 1

2 (e≤+e°≤)| = 2≤.

Similarly, the combined length of sides 3 and 9 is 2arccosh | tr(F )/2| = 2¡, and the length
of side 4 alone is 2arccosh | tr(A)/2| = 2Æ. Sides 6, 7, 10, 11, and 12 have the same length
as, respectively, sides 8, 1, 4, 9, and 2 because those respective side pairs are identified.
Thus the total perimeter of F is

2(2±+2≤+2¡+2Æ) = 4(Æ+±+≤+¡). ⇤



16 Adam Abrams, Svetlana Katok, Ilie Ugarcovici

Remark 4.4. For many surfaces (e.g., all those with æ = ø = Ω = 0) sides 2 and 8 will
each have length ≤, sides 3 and 9 will each have length ¡, etc., but in general we require
only that sides 2 and 8 together have total length 2≤, and so on, with only sides 1,4,7,10
having simple expressions for their individual lengths.

The subspace of T (2) in which æ = ø = 0 contains several notable surfaces (in these
cases, the origin of D is a “Weierstrass point” of the surface):

• The regular polygon corresponds toÆ= 1
2 arccosh(1+

p
3), Ø= ∞= 2Æ, and Ω = 0.

The perimeter of the regular polygon for g = 2 is 12arccosh(1+
p

3) º 19.955, and
the associated entropy is H(2) = 4º2/(12arccosh(1+

p
3)) º 1.978.

• Maskit’s “base surface” [23, Sec. 3] corresponds to Æ = Ø = ∞ = arccosh(2) and
Ω = 0. The perimeter of F for this surface is 16arccosh(2) º 21.071, and so the
entropy of the boundary map is º1.874.

• The Bolza surface is the hyperbolic genus 2 surface that maximizes the systole
(the length of the shortest closed geodesic on the surface) [28]. Denoting

`1 = 2arccosh(1+
p

2) º 3.057, `2 = 2arccosh(3+2
p

2) º 4.897,

this systole is exactly `1. This surface corresponds to Æ = Ø = ∞ = 1
2`1 and

Ω = arcsinh(1).6 Usually the Bolza surface is described as a gluing of a regular
octagon, but it can also be described as a gluing of a 12-gon, as shown in Fig-
ure 10. Sides 1, 4, 7, 10 have length `1; sides 2, 6, 8, 12 have length 1

2`2; and sides
3, 5, 9, 11 have length 1

2`1. Thus the perimeter of F is 6`1 +2`2 º 28.137, and
the entropy of the boundary map is º1.403.

Figure 10. Fundamental 12-gon for the Bolza surface (sides of the
same color are identified).

6The authors thank Polina Vytnova for suggesting and assisting with the question of parameters for the
Bolza surface.
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5. Open questions

The flexibility results of Section 3 are proved under the assumption that the multi-
parameter A is extremal or has short cycles. In order to say anything about the mea-
sure-theoretic entropy hµA

( f A), we must have a well-defined measure µA , and this is not
guaranteed in all cases. This could be established directly—Conjecture 5.1—or through
the connection to geodesic flow and natural extension maps—Conjectures 5.2 and 5.3.
Additionally, we use the conjugacy

©A :≠geo !≠A

between Fgeo and FA

ØØ
≠A

to prove that hµA
( f A) = º ·Area(F )/∫(≠A) from Step 2 of Sec-

tion 3, and this is currently known only for extremal and short cycle multi-parameters.

Conjecture 5.1. For any F 2 T (g ) and any A with Ak 2 [Pk ,Qk ], there exists a smooth
f A-invariant ergodic probability measure µA.

The existence of this measure for maps f A admitting a Markov partition can be es-
tablished directly using Adler’s “Folklore Theorem” similarly to the case A = P discussed
in [6, 13, 12]. For regular fundamental polygons, existence can be established using re-
sults about expanding, non-Markov maps in [36].

Conjecture 5.2. For any A with Ak 2 [Pk ,Qk ], there exists a set ≠A Ω S£S \¢ with fi-
nite rectangular structure that is a domain of bijectivity for FA and moreover the global
attractor of FA :S£S\¢!S£S\¢.

Conjecture 5.2 is part of the “Reduction Theory” proposed by Don Zagier and de-
scribed for Fuchsian groups in [19, Introduction]. Additionally, understanding the struc-
ture of≠A may help in proving the following:

Conjecture 5.3. For any A with Ak 2 [Pk ,Qk ], the map FA

ØØ
≠A

is conjugate to Fgeo by a

map©A :≠geo !≠A that acts piecewise by Möbius transformations.

If Conjecture 5.3 is true then Theorem 1.2 in fact holds for all A with Ak 2 [Pk ,Qk ].
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