
Math. Ann. 273, 461470 (1986) 
MathemaUsche 
Annam 
�9 Springer-Verlag 1986 

Reduction Theory for Fuchsian Groups 

Svetlana Katok 

Department of Mathematics, University of California, Los Angeles, CA90024, USA 

0. Introduction 

Let F be any Fuchsian group, i.e., a discrete subgroup of the group of isometries of 
the hyperbolic plane H 2. We consider the unit disc D = {z ~ C, Izl < 1} endowed 

21dzl 
with the Poincar6 metric ds= 1 -  Izl ~ as a model of the hyperbolic plane. The 

geodesics for this metric are circular arcs orthogonal to $1= OD = {z e C, Izl = 1}. 
Two geodesics can intersect at most once. The group F acts on D by linear 

fractional transformations and can be represented by matrices with 

a, ceC and agl--c6=l. The unit circle S 1 is a fixed circle for the group 
F, F:  S ~ ~ S  1. All the necessary information about Fuchsian groups can be found 
in [2]. 

In this paper we develop a so-called reduction theory for Fuchsian groups F 
with compact quotient F\D. We assume for convenience that 0 is not an elliptic 

point of F, i.e. c ~ 0 ,  for ( :  ~) e F. Obviously, every F is conjugate to a group 

satisfying this property. This theory serves the same purpose as Gauss reduction 
theory for SLE(Z ) based on continued fractions. An important ingredient in the 
argument is a construction of two expanding maps on the boundary f•  :S ~ --~S 1 
associated to the group F. This construction is a generalization of that used by 
Bowen and Series in [1]. 

1. Construction of the Fundamental Region Ro and the Special Polygon R 

Definition. Let~=(:  ~)eF. ThecircleJ(~,)={zeD,[cz+dl=l}iscalledthe 

isometric circle of 7- 
Since r -2, ~ expands Euclidean distances within J(7) and 

contracts outside. 
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Let Ro be the intersection of D with the exteriors of all isometric circles J(y), 
e F. The region R 0 constitutes a fundamental region for F. Since F is finitely 

generated and contains no parabolic elements, the boundary of Ro consists of a 
finite number geodesic arcs with vertices inside S 1 I-2, Theorem 15, 16, Sect. 34]. 
The images of Ro under F exactly fill up D. Each side s of Ro is identified with 
another side s' by an element ~(s), s C J(7(s)) and s'C J (y - l ( s ) )=  y(s)(J(y(s))). The 
set {V(s), s is a side of Ro} forms a set of generators for F [2, Sect. 23], and Ro can be 
regarded as all that part of D which is exterior to J(y(s)), s is a side ofR o. In order to 
construct the fundamental region Ro, we list elements of the group F as follows. 
Given any A > 0 there are only finitely many elements of F with [a[ < A. This 

/ 

follows from the equality [al 2 - Ic[ 2 -- 1 and the discreteness of the group F. ( I f  F is 
\ 

arithmetic group then after a suitable conjugation we will have [a[ 2, [cl 2 in 1 Z a n  

for some integer N; see the examples in Sect. 5.) We can thus list elements of F in 
/ 

increasing order of [a[. This list will eventually include all elements of F. Taking 
isometric circles for the elements according to their order we shall obtain the 
fundamental region Ro as described above after a finite number of steps. Indeed the 

distance from the isometric circle J(7), ~ = to the center of D is equal to 

( la l -  1)/Icl which tends to 1 as lal--, oo. Thus isometric circles with sufficiently large 
lal cannot contribute to the boundary of the compact fundamental region R o. 
Examples of fundamental regions for some arithmetic groups are given in Sect. 5. 

For  each geodesic arcJ(7(s)) we consider the smaller of two arcs of OD having 
the same end points. Since all the vertices of R o lie inside OD these chosen arcs form 
a cover of OD. We can always choose a subcover of this cover in such a way that no 
two non-consecutive arcs intersect by deleting some "extra" arcs. 

Definition. We shall call a polygon R s D a special polygon associated to F if it 
satisfies the following properties: 

i) R has finite number of vertices and they all lie inside D; 
ii) All sides of R belong to isometric circles of some elements of F; 

iii) Isometric circles containing any two non-consecutive sides of R do not 
intersect. 

Obviously, the polygon formed by the isometric circles corresponding to the 
arcs of a subcover constructed above is a special polygon. 

2. Construction of the Maps f+ and f_ 

Let R be a special polygon associated to F. Its sides and the end points of the 
corresponding geodesic arcs are labeled in the anticlockwise direction by sl . . . . .  s, 
and [Pl ,  Q1] . . . . .  [P,,  Q~] respectively. For  each arc [Pi, Qi] c S 1 we choose an arc 
[P~,Q~cS 1 inside [Pi, Q~] in such a way that the order of the points 

, ,a, p, ~, , , P~ ,z . ,  z , z ,  . . . .  , P . , Q . - 1 ,  is the same as the order of the points 
P1, Q., P2, Q1 . . . . .  P.,  Q . -  1 (see Fig. 1), so that the arcs [P~, Q/'] still form a cover of 
S l . 
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We define two partitions of S~: 

M + = {to+ }7=a, to+ = FP;, P;+ , ) ,  i e Z / n Z  

and 

M -  = {to~- }s=a, to? = [Qj'-~, Qj.), j e Z / n Z ,  

and two piecewise continuous maps f+ ,  f_  :S 1 ~ $ 1 :  

f+(x )=y i ( x ) ,  if x e t o  + ;  

f _ (x )  = 7j(x), if x e to#-. 

Since to+ C [P;, O~, it lies inside the isometric circle J(7i) and we have for x e to[  
If+ (x)l = N(x)l > #-i > 1. Similarly, for x e tof  we have If'- (x)] > 2j > 1. Taking into 
account  that R has a finite number  of sides, we have the following result. 

Lemma 1. The maps f+ and f_  are expanding, i.e., there exists 2 > 1 such that 
I f ; ( x ) l > 2  for x+P; ,  i= 1 . . . . .  n, and IfZ(x)l> 2 for x * Q ; ,  i= 1 . . . . .  n. 

Lemma 2. Suppose Ix, y] C to{- and let c denote one of  the symbols + ,  - .  Then 
either f+(x)  and f+(y) belon9 to different elements of  M c or, if f+(x)  and f+(y) 
belong to the same element m s of  M c, then f+([x,y])Cto~. 

Proof. Suppose f+ (x) e to;, f+ (y) e to~, but f+ (Ix, y]) r to~. For  t e to [ ,  f+  (t) = 7i(t). 
We have to+ C [Pi, Oi]. 7i([P~, Qi]) is an arc ofS 1 lying outside J(7/- 1) = 7i(j(71) ) and 
therefore does not cover the whole circle S ~. Since 71(t) is cont inuous and 
mono tone  on the arc l-Pi, Qi], f+ ([x, y])  does not  cover the whole circle S ~, and the 
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assumption forces 7i(P3 and yi(Q3 to lie inside co~ (see Fig. 2). Since ~of C [-Pi, Q J] 
and ~ofc[Pj ,  Qi ], we have j(y/-l)  lies within J(~), which contradicts the 
properties of the fundamental region Ro, described in Sect. 1. [] 

Theorem. Let x, y ~ ~o +. There exists a finite sequence nl, n2, ..., nk of positive 
integers such that f~k . . . . .  f"_2f~_l(x) and f~k, ...,f"_2f~'(y) belon9 to different 
elements of both partitions M + and M - .  

i x ~o + and f~_'(x) and Proof There exists an integer nl such that for i < nl f~-([ , y]) C k, 
f~.'(y) belong to different elements of the partition M +. Otherwise, according to 

n X + Lemma 2, we have f~. ([ , y]) C ogk, for all n > 0, which contradicts the fact that f+ is 
expanding (Lemma 1). Let f.~'(x) = xl ,  f7l(y) = y~. Suppose xl,  Yl C coj. According 
to Lemma 2 f~_'([x, y]) Coff, i.e. f~_'([x, y]) = Ix1, Yl]. Applying the same argu- 
ment to the arc [x l , y l ]  we find n2>O such that for i<n 2 fi_([xl,yl])Cco ~ and 
f"_~(x 1) and f"_:(y i) belong to different elements of the partition M - .  If f-"~(Xl) = x2 
and f"-~(YO = Y2 belong to the same element of M +, so does the arc f"-~([xl, Yl]) 
= Ix2, x2]. Since both f+ and f_ are expanding (Lemma 1), the length of [x2, Y2] is 
at least 2 times the length of [x, y] with a fixed 2 > 1. This consideration shows that 
after a finite number of steps we obtain a pair of points Xk, Yk belonging to different 
elements of both M + and M - .  [] 

3. Reduction Theory and Coding of Geodesics 

Any hyperbolic element ? ~ F(ltrT[ > 2) has two hyperbolic fixed points on S 1, one 
repulsive and one attractive. We shall denote them by wl and w2. Let C(7) be the 
oriented geodesic on D from wl to w 2. It is called the axis of y and clearly it is 



Reduction Theory for Fuchsian Groups 465 

<7>-invariant. We shall call a hyperbolic element 7 reduced if C ( j  intersects the 
given fundamental region Ro (see Sect. 1). C ( J  becomes a closed geodesic in F\D 
and it can be coded according to the order it intersects the sides of R o. This idea 
goes back to Morse [-4] (see also [5, p. 104-1). More precisely, suppose C(7) enters 
Ro through the side si and leaves it through the side sj. The side s~ is identified in R o 
with the side sj by the transformation 7j, therefore the transformation 7j7~'i- ~ = 7' 
will have its axis entering R o through sj. The first symbol in the code will be j, and 
we continue the process with C(7') instead of C(J .  Since the geodesic is closed, the 
code will be periodic. If two elements 70 and 71 are conjugate in F, i.e., ~,1 = 7707- a 
for some TEE, then C(h)=7C(7o).  There is 1-1 correspondence between 
conjugacy classes of hyperbolic elements in F and closed geodesics in F\D. If two 
hyperbolic elements are conjugate in F, their closed geodesics in R o coincide and 
therefore their codes differ by a cyclic permutation. Conversely, if two closed 
geodesics have the same code, we can make a homotopy between them along each 
pair of corresponding sides. Therefore the code determines the free homotopy class 
of a closed geodesic, and since there is only one closed geodesic in each free 
homotopy class, those geodesics coincide. If two hyperbolic elements having the 
same trace have the same code (up to a cyclic permutation), they correspond to the 
same closed geodesic and therefore are conjugate in F. If two hyperbolic elements 
of different trace have the same code, then both are conjugate to powers of the 
same primitive hyperbolic element having the same code. We know that each 
hyperbolic element is conjugate in F to a reduced one. The goal of a reduction 
theory is to give an algorithm producing this conjugation. 

We shall define a compact region D O associated to the special polygon R 
described in Sect. I. Consider 2n geodesics connecting each pair of the consecutive 
points P~, Q~_ t and Q~, P~+z, i~Z/nZ (see Fig. i). Let D O be the smallest circle 
concentric with the principal circle S L which intersects all those 2n geodesic circles. 
Do is completely covered by R o and a finite number of its images under elements of 
F. We shall call a hyperbolic element 7 almost reduced if C(7) intersects the compact 
region D O . The reduction algorithm we are about to describe assumes that we 
know the following data about the group F: 

1. a list of elements ofF, the fundamental region Ro as in Sect. i and generators 
of the group F; 

2. the special polygon R described in Sect. 1; 
3. the compact region D O as above and a finite set of elements ~(~j~F, 

N 

i=  1 . . . . .  N such that U 7(i)Ro D Do. 
i = l  

We shall describe now the reduction algorithm, starting from a hyperbolic 
element 7: 

Step 1. If the end points w a, w2 of C(7) (i.e., the hyperbolic fixed points of ?) belong 
to the same element ~o/+ ~ M § , then conjugate ~ by 7i =f+ .  This replaces 7 by a new 
element with the fixed points f§ f§ If these points belong to the same 
element of M +, repeat Step 1; otherwise proceed to Step 2. 

Step 2. If the end points w~, w2 of C ( J  belong to the same element co i- e M - ,  then 
conjugate 7 by ~i = f - "  If the fixed points f-w1, f-w2 of a new element belong to the 
same element of M - ,  repeat Step 2, if they belong to the same element of M § go to 
Step 1; otherwise proceed to Step 3. 
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Step 3. Now the fixed points ofy belong to different elements of both M § and M - .  
Therefore C(7) intersects the compact region D O and y is almost reduced. Since 

N 

Do C U Yt0Ro, C(~) intersects y(i)R 0, for some i. Conjugate y by y~l and obtain a 
i = 1  

reduced element. 

4. Remarks 

The algorithm described in Sect. 3 depends only on the geodesic C(~) and can be 
applied to any (not necessarily closed) geodesic in D. It allows us to reduce such a 
geodesic to obtain its code with respect to the given fundamental region Ro. The 
code will not be periodic unless the geodesic is closed, i.e., is an axis of a hyperbolic 
element in F. 

Consider the arithmetic case where F is contained in some quaternion algebra 
H over Q with H |  = M2(R). Then to each ~ e H which is hyperbolic [i.e., (try) 2 
- 4 det ~ > 0] corresponds a geodesic C(~) whose image in F\D is closed since there 
exists a hyperbolic 7 e F with C(y)= C(~) (the centralizer of ~ in H is a real 
quadratic field and y corresponds to a non-trivial unit). Note that any element 
2~ + # (2 e Q*, # ~ Q) has the same geodesic. Consider the set of ~ e H modulo the 
equivalence relation ~,-~ 2~ +/~. Choosing 2 suitably we can assume that ~ ~ (9, a 
given order of H, containing F, and that ~ is primitive (not divisible by an integer 
bigger than 1) in .~ =-(9/Z ~-Z 3. The group F acts on .~ by conjugations. What our 
reduction algorithm does is to pick out of each F-equivalence class of hyperbolic 
elements of.~ a canonical (finite and non-empty) set of representatives which form 
a cycle in a natural way. In the classical case F = SL2(Z), H = Mz(Q), (9 =- M2(Z) 
the space .~ is the space of all binary quadratic forms with integer coefficients, and 
the analog of our theory is Gauss reduction theory of indefinite binary quadratic 
forms (as described, for instance, in [6, Chap. 13]). 

5. Examples 

1. The following example illustrates the algorithm of the construction of the 
fundamental region R o given in Sect. 1 for a special arithmetic group F. We begin 
from a subgroup of PSLz(R ) 

 !w 3/t 
where 

(l,m,u,w)~Z 4,/= w(mod2), m=u(mod2) and de ty=  1, 

i.e. 12-3m2-5w2+ 15u2=41'. 
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This group is an embedding of the group of units of a maximal order of the 
quaternion algebra over Q with discriminant 15 [7, p. 123]. The group 

F=RF15R-1, whereR=(i li) actsontheunitdiscD. LetusdenoteRTR-1 
(~ ~) l-iuV~2 , w[/~-im/32 ' lr ~r = . Then a =  c=  lal2=x+l, Icl2:~, so 

la[2, Icl2 ~ ~ Z. We can therefore list all elements ( :  ~) of F in increasing order of 

lal by solving the equations 12+15u2=r+4, 5w2+3m2=r, l--w(mod2), 
m-u(mod2)  for r = 0 ,  l, 2 . . . .  

T a b l e  1 

r e m u w x y R 

5 3 0 0 -1 1.342 0.000 0.894 
5 3 0 0 1 -1.342 0.000 0.894 

12 4 -2 0 0 0.000 1 . 1 5 5  0.577 
12 4 2 0 0 0.000 -1.155 0.577 
27 4 -3 -1 0 0.745 0.770 0.385 
27 4 3 -I 0 -0.745 -0.770 0.385 
27 4 -3 1 0 -0.745 0.770 0.385 
27 4 3 1 0 0.745 -0.770 0.385 
32 6 -2 0 -2 0.839 0.650 0.354 
32 6 -2 0 2 -0.839 0.650 0.354 
32 6 2 0 -2 0.839 -0.650 0.354 
32 6 2 0 2 -0.839 -0.650 0.354 
45 7 0 0 -3 1.043 0 .0O0  0.298 
45 7 0 0 3 -1.043 0.000 0.298 
47 6 -3 -1 -2 0.999 0.295 0.292 
47 6 -3 -1 2 -0.143 1.032 0.292 
47 6 3 -1 -2 0.143 -1.032 0.292 
47 6 3 -1 2 -0.999 -0.295 0.292 
47 6 -3 1 -2 0.143 1.032 0.292 
47 6 -3 1 2 -0.999 0.295 0.292 
47 6 3 1 -2 0.999 -0.295 0.292 
47 6 3 1 2 -0.143 -1.032 0.292 
57 1 -2 -2 -3 0.588 -0.851 0.265 
57 1 -2 -2 3 0.353 0.972 0.265 
57 1 2 -2 -3 -0.353 -0.972 0.265 
57 1 2 -2 3 -0.588 0.851 0.265 
57 1 -2 2 -3 -0.353 0.972 0.2.65 
57 1 -2 2 3 -0.588 -0 .851  0.265 
57 1 2 2 -3 0.588 0.851 0.265 
57 1 2 2 3 0.353 -0.972 0.265 
75 8 -5 -1 0 0.447 0.924 0.231 
75 8 5 -1 0 -0.447 -0.924 0.231 
75 8 -5 1 0 -0.447 0.924 0.2.31 
75 8 5 1 0 0.447 -0.924 0.231 
92 6 -2 -2 -4 0.875 -0.527 0.209 
92 6 -2 -2 4 -0.292 0.979 0.209 
92 6 2 -2 -4 0.292 -0.979 0.209 
92 6 2 -2 4 -0.875 0.527 0.209 
92 6 -2 2 -4 0.292 0.979 0.209 
92 6 -2 2 4 -0.875 -0.527 0.209 
92 6 2 2 -4 0.875 0.527 0.209 
92 6 2 2 4 -0.292 -0.979 0.209 
137 9 -2 -2 -5 0.930 -0.405 0.171 
137 9 -2 -2 5 -0.539 0.860 0.171 
137 9 2 -2 -5 0.539 -0.860 0.171 
137 9 2 -2 5 -0.930 0.405 0.171 
137 9 -2 2 -5 0.539 0.860 0.171 
137 9 -2 2 5 -0.930 -0.405 0.171 
137 9 2 2 -5 0.930 0.405 0.171 
137 9 2 2 ~; .0.539 -0.860 0.17l 

In Table 1 we give the beginning of this list. (For r = 0 we get the identity 
element which we do not include in the table.) Columns 1-5 give values of 
r, l, m, u, w. Columns 6-8 give the coordinates (x, y) of the center of the correspond- 
ing isometric circle and its radius R. The isometric circles of the first 8 elements 
form a boundary of the fundamental region R0 (see Fig. 3), and therefore those 
elements can be chosen as generators of the group F. The genus of F\D is 1 and the 
number of non-equivalent in F elliptic points of order 3 equals 2. The special 
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Fig. 3 

Qa Pt. 

Q~ P2 

Fig. 4 

polygon R in this example coincides with the fundamental region R o. The compact 
region Do described in Sect. 3 and a finite part of the tesselation of D by the images 
of Ro is given in Fig. 3. 

2. In Fig. 4 we give the fundamental region Ro, the tesselation of D and the 
compact region D O for F=RFlo R-l, where F~o is the following arithmetic 
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subgroup of  PSL2(R): 

where 

u+w (l,m,u,w)eZ 4, 31(u+w), l - n  = - -  

i.e. 

w6.t 
l -2V~_  ] 

3 = m(mod2), and  det7 = 1, 

] 

312--30mZ+ 10u2--w 2 = 1 2 [  

J 
The set of  generators  of  F whose isometric circles form the b o u n d a r y  of  the 
fundamenta l  region R 0 is given in Table 2. 

Table 3 gives codes of  all elements of  F with traces up to 24 with respect to the 
fundamenta l  region Ro, as explained at the beginning of Sect. 3. This g roup  has 
been studied in great detail in I-3, Chap. 4]. Here we give several examples of  
elements of  trace 4. Elements 71 = (4, 0, 8, - 26) and 72 = (4, 1, 43, - 136) have 
different codes:  code 71 = (13), code 72 = (6242) and therefore they are not  conju- 
gate in F and represent different closed geodesics. Elements 73 = (4, l ,  1, - -4)  and  
74 = (4, 0, - 8 ,  26) have the same code (46) and  therefore are conjugate  in F. F o r  
trace 4 there are four different closed geodesics, (5351) and (6242), (13) and (46), the 
geodesics in each pair  differ only in orientation.  
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