LINEAR EXTENSIONS OF DYNAMIC SYSTEMS
AND THE REDUCIBILITY PROBLEM

S. B. Katok UDC 517.9

The relation of linear extensions of smooth dynamic systems to cohomologies and to reducibil-
ity in the case of flow is investigated. A result is obtained concerning I'-cohomologies in the
neighborhood of a constant cocycle for the case of an arbitrary closed subgroup I' of the group
GL (k, O).

Let X and Y be real-analytic manifolds. We denote by (X, Y) the set of all real-analytic mappings
of X into Y. A group {Tg, g €G, where G is a Lie group} of diffeomorphisms of the manifold X is said to
be a real-analytic dynamic system with time G, and is denoted by (X, Tg) if

A(z, e = U (X X G, X),where 4 (z, g) = T.x.
For the sake of brevity we will use the term dynamic system for a real-analytic dynamic system.

Let I be a closed subgroup of GL(k, C). We call the dynamic system (X x CK, Tg) a k-dimensional
complex linear extension of the dynamic system (X, Tg) with the group TI', if, forallg €G,x €X,y € Ck,
we have

To(z, u) = (Tgx, k(= 8) y), .

where h(x, g) €% (X x G, I'). Since Tgi is a group, we have
h(T gz, g:3)h (%, 81) = h(x, §:183), h(%, €)= E. (1.2)
Clearly any function h(x, g) € (X xG, I'}, satisfying (1.2) determines, through (1.1), a linear extension of

' the dynamic system (X, Tg). Two linear extensions (X x ck, T1) and (X x CE, "fé) are called isomorphic
if there exists a mapping S: X x CK, determined by the relation

S (x, y) = (x; e@)y), plx) =AU (X, )
and such that S"f‘gﬂ =72 S, 1f the linear extensions T() and ’f‘gZ) are determined by the functions hy(x, g)
and hy(x, g, respectivegly, then & '

hy (z, 8) = @ (Tgz) - By (2, 8) - 97" (2). (1.3)

By analogy with the known construction of homologies of groups, we sometimes consider (see [1])
various cohomologies (measurable, smooth, analytic) of a dynamic system (X, Ty). For example in the
definition of analytic cohomologies, the function h(x, g) € ¥ (X X G, I') is called a cocycle if it satisfies (1.2),
and two cocycles are called I'~cohomologies if they are related by (1.3). We use these terms since it is
immaterial whether we speak of cohomological cocycles or of isomorphic linear extensions.

In this work, we are interested in the two very simple ("classical") cases G =Z and G = R.

If G = Z then (1.2) implies that the cocycle h(x, n) is uniquely generated with respect to the function
h(x, 1) =g(x), where (1.3) is equivalent to

g @ =09 (T2) - g () - ¢ (2). (1.4)
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in which g;(x) = hy(x, 1) and gy(x) =hy(x, 1). In the sequel we use the term cocycle for the functions g(x) €
(X, I') themselves (no conditions have yet been imposed on them) and demonstrate their cohomology in the
sense (1.4).

Let G =R. A flow {St} ona real-analytic manifold X can be specified in each local system of co-
ordinates by a system of differential equations

z = o (2).
Consider the flow {§t} in X x CK, defined by the differential-equation system
9=A(f’”>y’} (1.5)
&= o(z),
where A(x) €U(X, Ar); here Ar denotes the .Lie algebra of the group I'. The following proposition is

easily proved.

PROPOSITION 1.1. The flow {§t} is a linear extension of the flow {St} and, conversely, any linear
extension of the flow {St} is determined by a system of the form (1.5).

The role of the function h(x, t) will be played by Yx(t), which is the solution of the matrix system cor-
responding to (1.5) with initial conditions

Y(0)=E, z(0) ==
We say that two systems of differential equations

£ = 0(z) Z = @ ()

-

are mufually reducible, if there is a function C(x) €% (X, I') such that the change of variables z =C(x) y
transforms the system (II) into the system (I).

PROPOSITION 1.2. Linear extensions are isomorphic if and only if the corresponding differential-
equation systems are reducible.

We note that in this case the coeycle h(x, t) is uniquely generated with respect to the function A(x)
from (1.5), where relation (1.3) is equivalent to

A@@) =C (@) - Ba) - C(z) — CH)C(), (1.6)

whereC(x) € U(X, '), and C(x) is its derivative in the direction of the vector w(x). [Here A(x) and B(x) are
the right sides of (I) and (I} respectively.]

2. THEOREM 2.1. Let the dynamic system (X, Ty) with time Z have no analytic characteristic func-
tions. Then the cohomology of constant cocycles A and M, reducible to diagonal form, is equivalent to the
similarity of the matrices of A and M.

Proof. We write diag(a, b, .. ), for a diagonal matrix with diagonal elements a, b, . . .. A is similar
to diag(As, Ay, . . ), and M is similar to diag(yy, uy, . . ). Plainly, with no loss of generality, we may as-
sume that A and M are themselves diagonal. We assume that there is @ (x) € (X, I') such that ¢(Tx)A ¢~ 1.
(x) =M. Let ¢(x) = |ieli(x)|l. The condition implies that there are i and j such that ¢ii(x) is not constant.
Then goij(TxAj = pielix), and @li(Tx) = (pi/ny) pli(x), i.e., ¢l is a characteristic function, which con-
tradicts the condition. This proves the theorem.

We note that, for I' = GL(k, C), the absence of any analytic characteristic functions is also necessary:
If there is a characteristic function ¥ (x) with characteristic value eld, then there are cohomological con~
stant cocycles which are not adjoint as matrices; for example,

A =diag (M, Ao, . .., Ay} 30d M = diag (A%, Ay, ..., Ay)
are cohomological: . @ (Tx) Ap™* (2) = M, where
¢ (x) = diag (b (), 1, ..., 1).

3. Let TIM be an m~dimensional torus
Tr = {g= (x4, ..., Tn), ;= R/20Z, i=1, .., m},
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let G = Z with the group translations of the torus
Te=T¥g=1z-+a (mod 27), « =T,

as generating diffeomorphism, and let I" be a closed subgroup of GL.(d, C). We propose to study in % (T™M, I'),
the neighborhood of a constant cocycle reducible to diagonal form.

All functions (scalar-, vector-, or matrix~valued) which we consider are analytic on the torus. This
means that every such function, considered as a periodic function on R, can, for some r >0, be continued
analytically into the region|{Im z;|=r,i=1, ..., m. We use the notation [f ||+ = |nﬂla;x 17(2)| (the concrete

zi <<r )

choice of norms for vectors and matrices is immaterial). In this section we prove

THEOREM 3.1. Let A be similar to diag(Xy, Ay, . . ., N, and, for V20 (Vv =(¥y, ..., V), ¥; € Z,
i=1,...,m let
[A — 29| > Clv[™, € > 0,50 (3.1.1)
For any r; >0, there exists g >0 such that, if [|f—A]l r, < & for the cocycle f(x) en(TM, I'), then there
is a matrix P € I', differing only slightly from E, for which the cocycle f(x) - P is I'-cohomological to the
constant cocycle A.

The method of proof of Theorem 3.1 can be made to apply to the case of continuous time. We have

THEOREM 3.2. Consider the differential-equation system

(111) {?= Ap,
i = o,
where the matrix A € Ap is similar to diag(ay, . . ., ap) and, for ¥ #0, we have
|@; —a; —i(v,0)| >C|v[* C>0,5>0. (3.2.1)

For any r, >0 there exists & > 0 such that, if || B(x)—AHr0 <g, for B(x) € Y(TM, I'), then there is a con~-
stant matrix Q € A, for which the system
{!] = (B (z) + Q) ¥y,

I=0
is reducible to the system (III) by a transformation C(x) ¢ 9(TM, I'),

The problem of the reducibility of systems of linear differential equations with periodic coefficients
has been studied by many authors (see A. E. Gel'man [3, 4], L.. Ya. Adrianova [5], I. N. Blinov [6], and O.
B. Lykova [7]). Yu. A. Mitropol'skii and A. M. Samoilenko [8] used Newton's method (the method of ac-
celerated convergence) in their investigation of the reducibility of systems with right-hand sides differing
only slightly from a constant. The actual results obtained refer to that formulation of the problem corres-
ponding, in our notation, to the case I = GL(k, C), which, to the author's knowledge, was first considered
by V. 1. Arnol'd ([9], p. 181), although some of the results appeared before [3]. The authors usually forin-
ally consider reducibility in the classical sense ([2], p. 251). In this case it is a question of the mutual
reducibility of one system y = A}y, t € R, to another z = B(t)z, so that in (I} and (II) we have families of
systems

(I) y = A4Sy, (L) z= B(S.)z

depending on x € X, and our definition requires not only the reducibility of each of the systems (Ix) to (IIy),
but also imposes limitations on the dependence of the coefficients of the reducing transformation with re-
spect to x. Reducibility in the sense under consideration is clearly stronger than classical redueibility of
a system of the corresponding family (and irreducibility is weaker).

Yu. Mozer [11] considered the group aspect of the problem. Ie studied a more general problem with
nonlinear terms. Our Theorem 3.2 for the case I’ éGL(k, C) is a consequence of his Theorem 1 and also
a consequence of Theorem 2 of [8].

Proof of Theorem 3.1. Our proof uses Newton's method in the form employed by Yu. Mozer in [10].

We introduce the operator
F UM, OyxY(T™, IN—-% (T T)
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by means of the relation*
(Blg 2), ox)) = @(T™2) - gla) - ¢7Y(a).

We must find ¢ (x) €¢d(TM, I') and P € I', such that
§ (@) - P, ¢lz)) = A.
We seek ¢(x) in the form of a limit ¢(x) = lim ¢,(z) , and f(x) * P in the form of a limitf(x) -+ P =
lim fz) where / ™ (x), e 91 (Tm, T) and f (01 = £ . K, with Ky a constant cocycle.
Suppose that ¢;(x), . . ., ?n(x) hdave already been found [we assume that ¢,(x) = E]. We express

(pn_.l. 1(X) in the form Vn(X) gﬂn(x) . Then % (]?ﬂ.+1 (x), Up (x) [0 ($)) = % (%(f(nﬂ)» an)y vn) == % (fn+11 Dn) where
fn+1 == % (f(n+1)7 QF’n)

Determine vy(x) from the equation
Q(‘xa L) (% (f’ﬂ‘?h UIL)) = [\ k) (3 .1)

where the operator £, .m denotes the selection of the linear terms in the formal expansion of § ina Tay-
lor series (a linearization) at the point (A, E), i.e.,

Lamy 8 (Fasy vn) = A + 81 (A, E)Fua + Fo (A, E) vy,

where vp(x) and A"17n+1(x) are in M (TM, A1), and exp Gn =vp, Alexp A'lfn+ ) =fn+1. Since
§ (A E) Fua = 1im (8 (A o+ thous. B) ~ B (A, B) = fous

we have

8t (8 (Furs, va)) = A F Foss + 8o (A, E) B0y 8o (A, E)Dn
= 1&1% (BAE + ) (2)) — G (A, E)) =0, (T2) A — AD,, (z),
and Eq. (3.1) becomes
Fons (2) + v, (T2) A — Av, (2) = 0. (3.2)

For the proof we demonstrate the induction lemmas 1p and 2y, assuming that these lemmas have al-
ready been proved for k <n with g; sufficiently small. To state the lemmas we introduce the following no-
tation.

Let fo =8 (" @n) =& (fs: vn1); and & =Sp—A. Define rp by the relationt rp+y = rn~ap, where
on :ds%/‘l(m“LS), and en = [[@n ]y, (the value of the constant d will be determined in the process of the
proof) .

LEMMA 1n. The constant cocycle Kn € I' can be chosen so that
$mfna@dz =0 (3.3)
and 'Kn—EI 5l1€n.

LEMMA 2. Iffn+1 satisfies (3.3), then Eg. (3.2) has a solution \711 (? €U (T™M, A1) analytic in the
region Im zill < ry+y, where lvn (®)irp+q = s;/“ and 1 ®n+q (%) vy 1,e3/2

Proof of the Theorem and the Lemmas. Lemma 1y implies that Kp, and sof M+ =f(Wx,, can be
constructed and relation (3.3) will hold. Lemma 2y is then used to find v,(x), and this means that vplx) and
Pn+1 =vnlx) ¢n(x) have been determined. Repeating the same process with n replaced by n + 1, ete., we
obtain infinite sequences {¢¥p(x)} and {Kp}. The sequence {¥n(x)} converges in |Im zi] < rew, where

*Clearly the mapping & can be extended, by the same formula, to the mapping
A (T“‘, GLok, Q) X AT, GL (R, Q) — 4 (1, GL (E, C)),

which we use below in the calculation of § and Se
TConstants denoted by small latin letters d, 7, and ¢ with various indices depend only on A, C, s, and m.
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reo == lim r, (if g is suiliciently small we have r,, ~ V). In 1actletm -~ n., ‘rnen
' i

n—>00

[9n @ = a @ oo <[ @) — 0 @by, =1, 0@ (T, 3@ — E)ls,

<< exe o @ T, expoi@ — El,,, << T A+ [T, A +er—1]

Since, for sufficiently small g;, the product ‘

m

Je=n+i J=mdd

I @ +ed

n=l

is convergent, we have

[P (@) ~ @0 @y — 0.

R

It is proved similarly that f (0) (x) converges tof (x) + P in the region J1m zil = P, Where P = H:=1Kn-
Further, since ||@n(x) |l rn — 0 and the operator § is continuous, we have § (f (z) - P, ¥(x)) =A, and this
proves the theorem. ‘

Proof of Lemma 1. Consider the mapping {P(n); Ap —AAT and, for P€AT, let

P (P) =ST,,. Aln (A § (/™ (x)-exp P, 9, (x)) dz.
For 1/2 < |exp P| < 2 and sufficiently small &, we prove that

19 (P) — A - P| < eseo. (3.4)
For a fixed point x € T™M we have
[ AIn(A2§ (f) (2)-exp P, ¢, (2)) — A- P |
< |Al-In (A § (/) () exp P, @ (7)) — P |
L6 |A| AT (f™ (2)-exp P, 9, (z)) — exp P |-B ()2,

where 8(x) Zmin (lexp P}, A7 § (4™ exp P, ¢4(x))|). This inequality is obtained by applying the mean-
value theorem to the matrix-valued function In Z.

Repeated use of the triangle inequality yields
| A7lg, (To)f™ (z) exp P - ga'(z) —exp Pl <y | A7
X | expP | (| @n (T2) |- f™ (2) | - |ow’ (@) — E| +| @n (T2)]
XIf™ (@) — A+ lon (T2) — Ef - | A ]) gy’ | exp Pl

The last inequality is a consequence of Lemmas 1k and 2i for k <n. For sufficiently small g and lexp P} >
1/2, we have B(x) ™! < 4, and (3.4) is proved. But (3.4) implies that there exists Py satisfying the inequality
{Ppl 505803/4 and such that ¥(0)(Py) =0.
Since
YO (P,)) — $(0) — (d45") (Pr) | <o | P ?

and
[y (0) | < er [ D (2) [, = €28,y

we have
| (@) Po| — e Po | S ot

If g, is sufficiently small, the operator 4_’(“) together with its differential, differs only slightly from the
operation of multiplication by A in the 05803/ 4_peighborhood of the origin. Hence [Ppl * (cg—cql Ppl) = ci2p
for such g,.

If &, is such that cgl Pnl| = (1/2)c;, then |Pn|= (2¢;/cg) &n = cyen, i.e., for Kp = exp Pp relation (3.3)
holds and IKn—EI = lisn.

LEMMA A. Iet V be a finite-dimensional vector space over R, let M € GL(V) be reduced over C to
the form diag(y, iy, . . ), and for ¥ # 0
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e — 1> bv[*, 50,50, (A1)
Let the function @ (x) €% (TM, V) be analytic for [Im z;| = r and let
STm(p(x)dx =0.
Then the equation
v (z) = ¢ (2) + Mv (T%z) (A.3)
has a solution v(x) €9(TM, V) analytic for |Im zj| =r, and 0 <a<1

1ol

[}
um+s

[oha<<a

where a depends only on M, b, s, and m.

Proof. We first find and estimate the magnitude of the solution w(x) of Eq. (A.3) taking a value in the
complex vector hull VC of the space V. In some basis of the space VC we have M = diag(yy, pty, . . ). In
this basis, the coordinates WJ(X) and @ J(x) of the vector-valued functions w(x) and ¢ (x) satisfy a system of
equations

wiz) = @s(z) + pwiTz),

equivalent to (A.3). Hence the Fourier coefficients Wy, and 2R of these functions are related by the
Pj.v
equation w;, =" p‘ei(“—“) for v # 0, while Wi,0 is arbitrary [note that (A.2) implies that Pj0 = 0]; we set

Wi, =0. We now fmd a bound for w. Cauchy's formula yields H(,OJ vl =e !Vlr“ ?j I+ (we use the integral
torus Im zj =-r sign vi). The formula for Wi,y implies that

L1050 | < aae M [ v [ 3]
and so
fwl-o<ai]el Z‘,#o [v]F et ehir-)

g stmot gk > (k k —
<afolX,_ ket <aygf, (s +m~ 1) x w_zo( +1). (SJ(rr:r_s}L)'m Y

=aslel B (5T = ad 9l (L — ey el o

We have thus obtained a bound for ||wlly-¢. To prove the lemma it only remains to set v(x) = (1/2)
w(x) +(1/2) w(x).

Proof of Lemma 25. The fact that Eq. (3.2) has a solution Vn (x) €U (TM, AT), analytic in the region
|Im z;[ = rp+yq, follows directly from Lemma A. In factlet V=Ap, M=AdA|AT: v —ATlvA @(x) =
AT1f44(x). This converts Eq. (3.2) into Eg. (A.3).

Since the matrix A is similar to a diagonal matrix, M is reduced over C to diagonal form. The char-
acteristic values of M form a subset of the set (. . ., Aj/Ajs « « +s - & .,—Xi/ij, . . J) which, if it contains A;/}j,
also contains the conjugate number. Condition (A 1) holds because (3.1.1) is satisfied not only for any pair
As Ay but also for the pair of complex conjugate numbers; condition (A.2) follows from (3.3).

We now estimate I]fnﬂ“ rp’
}711—1 =Aln (A_l.—fnﬂ) == Aln (Zx—l (fn - 'Sn)) =A IH(E -+ AT (q)n +e4))

where £y =fn+1—fn =85 (M (Kn—E), ¢n). Lemma 1y implies [leylirn = €40&n and N‘bn”rn = gn. Hence

” ﬁHl ”"n < C11€n. (3 '5)
Applying (3.5) and Lemma A, we obtain
” fn+1 Hrn €, (3 .6)
" l)n ” n_an = OlZHS < 12 a_:erS .
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If ou+s = 0-181144, ie., ap = sz(m+s)_18£/4(m+s)’ then (3.6) implies that [[vplirp-a, = s%/‘i. Setting

d = c;{™M*8)~1 i the definition of ap, we obtain an estimate of Wnlley - It remains to estimate [t qllrp4y:

q)ﬁ+1 (.’L‘) = % (fn+17 U'n) - A1
but

A= S(A,E) (% (]_:n+17 UTL))'
It follows that we must estimate*
” fnﬂ (), 71(‘T)) — S(A,E)(F (fn+1(x)~ Un(.’l)) urn+1- (3.7)

Since (fn.H, vn) belongs, for all n, to a fixed neighborhood (A, E) in U(TM, I') X9N(TM, I'), in which the
operator § is infinitely differentiable, the expression (3.7) does not exceed

C13 (Ii fn+l —A “3711—1 + livn —E ”f‘nﬂ) < C13 (“ fn A ”"n+1 + “ 1 (f(n) (K - E)7 (P'n) ”rn+1) + C1a " Un "rnﬂ. lzsn .

In the last inequalities we have used Lemma 1y, the bound for [[vy “rn 44> Obtained above, and the bounded-
ness of the operator 3.

In conclusion the author wishes to express his gratitude to D. V. Anosov for his comments on this
work, which led to a relaxation of the limitations imposed on the group I' in the original variant of Theo-
rem 3.1.
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