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ABSTRACT. Given a closed, orientable surface of constant negative curvature and genus
g > 2, we study a family of generalized Bowen—Series boundary maps and prove the
following rigidity result: in this family the topological entropy is constant and depends
only on the genus of the surface. We give an explicit formula for this entropy and show
that the value of the topological entropy also stays constant in the Teichmiiller space of
the surface. The proofs use conjugation to maps of constant slope.

1. INTRODUCTION

The notion of topological entropy was introduced by Adler, Konheim, and McAndrew
in [5]. Their definition used covers and applied to compact Hausdorff spaces; Dinaburg [11]
and Bowen [8] gave definitions involving distance functions and separated sets, which are
often more suitable for calculations. While these formulations of topological entropy were
originally intended for continuous maps acting on compact spaces, Bowen’s definition can
actually be applied to piecewise continuous, piecewise monotone maps on an interval,
as explained in [19]. The theory naturally extends to maps of the circle, where piecewise
monotonicity is understood to mean local monotonicity or, equivalently, having a piecewise
monotone lift to R.

In [21], following his seminal work [20] on Markov maps, Parry showed that a piecewise
monotone, (strongly) transitive interval map with positive topological entropy is conjugate
to a constant slope map. In [17], Milnor and Thurston used kneading theory to prove a
semi-conjugacy result for continuous, piecewise monotone, but not necessarily transitive,
interval maps. In [7], following [6], Alseda and Misiurewicz give a simpler proof that also
generalizes to piecewise continuous, piecewise monotone interval maps.

In this paper we apply the results of [21, 7] to a multi-parameter family of piecewise
continuous, piecewise monotone maps of the circle, the so-called “boundary maps” for
surfaces of constant negative curvature, as in [15]. Some particular maps in this family—
including those considered by Bowen and Series [9] and further studied by Adler and
Flatto [4]—are Markov, and the topological entropy can be calculated as the logarithm of
the maximal eigenvalue of a transition matrix [22, Theorem 7.13] in these cases. However,
not all maps in our family admit a Markov partition, and yet we prove the following
rigidity result: in this family, the topological entropy is constant and depends only on the
genus of the surface. Therefore, the topological entropy in these non-Markov cases is the
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same logarithmic expression. We also show that topological entropy stays constant in the
Teichmiiller space of the surface.
Let T" be a finitely generated cocompact Fuchsian group of the first kind acting freely

on the unit disc D = {z € C: |z] < 1} endowed with hyperbolic metric 12|dz|2 such that

—|z
S =T\D is a surface of genus g > 2. 8

A classical (Ford) fundamental domain for I' is a 4¢g-sided regular polygon centered at
the origin. In [4], Adler and Flatto used another fundamental domain—an (8¢ — 4)-sided
polygon F—that was much more convenient for their purposes. Its sides are geodesic
segments which satisfy the extension condition: the geodesic extensions of these segments
never intersect the interior of the tiling sets vF, v € I'.

FicUre 1. Fundamental polygon F for genus g = 2.

We denote the endpoints of the oriented infinite geodesic that extends side k to the circle
at infinity 0D by Py and Qp41, where 1 < k < 8g — 4 is considered mod 8g — 4 throughout
this paper (see Figure 1). The counter-clockwise order of endpoints on 0D is the following:

Pl? Qla P27 Q27 ceey QSg—4-

The identification of the sides of F is given by the side pairing rule
(k) = 49 — k mod (8¢ —4) if k is odd
T 2 - kmod (8g —4) if k is even.

The generators Ty, of I' associated to this fundamental domain are Mobius transformations
satisfying the following properties: denoting p(k) = o(k) + 1 and with V) as the vertex
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of F where sides k—1 and k meet,
Tk(Vk) = ‘/p(k’)a Ta(k)Tk = Id, Tp3(k)Tp2(k)Tp(k)Tk = Id.

Remark. As functions on D C C, the generators T}, are Mobius transformations, but re-
stricted to the boundary S they are real functions of the arguments (but not fractional linear
transformations of the arguments). To simplify notation we will use “T}” in both situa-
tions: Ty(z) with z € 9D for complex (multiplicative) notation and Ty (z) := arg(Tx(el*))
with x € S = R/27Z for real (additive) notation. See the left of Figure 5 for a plot of
y = T(x) with z,y € [—m, 7.

Notice that in general the polygon F need not be regular. In fact, one of the definitions
of Teichmiiller space, used in [3], is the space of all marked canonical hyperbolic (8¢ — 4)-
gons in the unit disk D (up to an isometry of D) such that side k and side o (k) have equal
length and the internal angles at vertices Vi and V(x)41 sum to 7. (The topology on the
space of polygons is as follows: P, — P if and only if the lengths of all sides converge and
the measures of all angles converge.)

If F is regular, it is the Ford fundamental domain, i.e., the geodesic from Py to Q41
(which we denote as just PrQgy1) is the isometric circle for Ty, and Tp(PrQri1) =
Qo(k)+1 P (k) 1s the isometric circle for 7)) so that the inside of the former isometric
circle is mapped to the outside of the latter, and all internal angles of F are equal to /2.
See [2] for more details and Section 2 for additional properties of the generators T.

The object of our study is the family of generalized Bowen—Series boundary maps studied
in [15, 2, 1, 3] and defined by the formula

fa(@) =Ti(z) if x € [Ag, Akya), (1)

where
A= {Al,Ag, ...,Agg_4} and Ak S [Pk,Qk]

When all A, = P, we denote the map by fp (this map is what Adler and Flatto [4] refer
to as “the Bowen—Series boundary map,” although Bowen and Series’ construction [9] used
4g-sided polygons). In [3] we analyzed how the measure-theoretic entropy with respect to
the smooth invariant measure of maps in this family changes in the Teichmiiller space of .S
and proved a flexibility result: the entropy hy, takes all values between 0 and a maximum
that is achieved on the surface that admits a regular (8g—4)-sided fundamental polygon. In
contrast, the main result of this paper is rigidity of topological entropy: its value depends
only on the genus of the surface, remains constant in the Teichmiiller space 7(5), and does
not depend on the (multi-)parameter A.

Theorem 1 (Main Theorem). Let I' be a cocompact torsion free Fuchsian group such that
S =T\D is a surface of genus g > 2. For any A ={Ay, ..., Agg—a} with Ay € [Py, Qy], the

map f3z :S — S has topological entropy hiop(fz) = log(4g — 3 + /(49 — 3)% — 1).!

Remark. Most previous results on boundary maps f : S — S require the parameters A to
be in a smaller class: [4] uses only A = P and A = Q, [1] focuses on extremal parameters
and their duals, and [2, 3] require that the parameters have the short cycle property. In
this paper Theorem 1 applies to all parameters A with Ay € [Py, Qx]. Although our result
shows that all maps f; have the same topological entropy for a given genus g, they are not

IThe quantity log(4g — 3+ /(49 — 3)%2 — 1) can also be expressed as arccosh(4g — 3), but logarithm ex-
pressions are more common for entropies in general and especially for shifts, so we use the longer expression.
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necessarily topologically conjugate, since, according to [15], the combinatorial structure of
the orbits associated to the discontinuity points A could differ.

The paper is organized as follows. In Sections 2-4 we restrict ourselves to the case
when I' admits a regular (8¢ — 4)-sided fundamental polygon. In Section 2 we give the
formulas for generators T}, as functions on D C C (Proposition 2) and prove two additional
symmetric properties of generators as functions on 9. In Section 3 we compute the
maximal eigenvalue of the transition matrices for all “extremal” parameters and hence
the topological entropy for these Markov cases. In Section 4 we prove some symmetric
properties of the map 5 conjugating fp to a constant slope map. We conclude that 15
actually conjugates all f3 to constant slope maps, and in Section 5 we use this to prove
Theorem 1, first for I' admitting regular (8g — 4)-sided fundamental polygons and then
in the fully general case. A technical result stated and used in Section 4 is proved in
Appendix A.

2. ADDITIONAL PROPERTIES OF GENERATORS

Proposition 2. If the (8¢ —4)-sided fundamental polygon F is reqular, then the generators
Ty of the group I' are given as functions on D C C by

i(1-k)x :
el z + 14/cos o 2
k1 where o 1=

(—iy/cos a)z + ellk—Da’ 8g—4
Proof. We derive a formula for T (z) based on some geometric considerations also presented
in [14, Section 4.3] and [15, Appendix].

Let Tj,(2) = (az +¢)/(cz +a), where |a|* — |¢|* = 1. The isometric circle PyQpy1 of Ty,
also denoted I(T}), is given by the equation |cz + a@| = 1, has center Oy located at —a/c
with arg(—a/c) = —§ + (k — 1)a and radius R =1/ |c|.

Let d = |a| / |¢| be the distance from the origin O to the center Oy, of I(1},). The following
formula for R was obtained in [15, Appendix]:

R_ V2sin(a/2) _ \/1—cosoz.

4/ COS ¥ 4/ COS ¥

Ti(z) = (-

(2)

This implies that

1 \/ 1
R 1 e p—
R /1—cosa V1 —cosa

The isometric circle I(T}) is mapped by T} to the isometric circle of T} - o(k) With
center located at a/c. We analyze two cases:

o If k£ is odd and k < 4g, then Tk_1 = Tyg—k. The oriented angle Z0;004y_f =
(49 — 2k)ar = 7 + (2 — 2k)a, so afc = €(TH2=2K)(_G/c), which implies that
arg(a) = 7+(1—k)a. From arg(—a/c) = —5+(k—1)a, we get arg(c) = 7/2. Thus,

_ii=k)a iy/cos(a)

4= —F—— and c= ,
v1—cosa v1—cosa
and, after simplifying the common term —+/1 — cos «, we get relation (2).
o If kis odd and k > 4g, then o(k) = 4g — k (mod 8g —4) =129 —k — 4,50 T} ' =
Ti2g—k—4. The oriented angle Z0,00194—k—4 = (129 — 2k — 4)a = 37 + (2 — 2k)a,

le] =
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so ajc = 3™ =2k))(_gG/c) which implies that arg(a) = 27 4+ (1 — k). From
arg(—a/c) = =5 + (k — 1)a, we get arg(c) = —m/2. Thus

i(1-k)a :
a0 e— o Veos(a)

V1 —cosa Vl—cosa’

and, after simplifying the common term /1 — cos a, we get relation (2).

The case when k is even can be treated similarly. (|

Proposition 3. For allz € S, Ty(z + ) = Ti—1(x) + (49 — 3)a.

Proof. Let = (49 — 3)a. Then in complex (multiplicative) notation, the claim is
Ti(e%2) = P Ty_ 1 (2).

49—3

Note that el = ¢l(55=1)2" — _¢—ia, Then, using (2),

Ti(e%2) = (—1)FH1 (07D () +iveosa . e’
(—iy/cosa)(eioz) + eitk—Da gl
_ (—1)F (=) (e17Reeio) 2 4 iy/cos al
(—iy/cos @) + (eilh—Dae—ia)
(<)) (el=R2) 2 +iy/cosa
B (—iy/cos a)z + ellk=2)a
=P T 1(2). 0

A function r(z) is said to be centrally symmetric around c if r(c+z)+r(c—x) is constant
for all x € S (this constant will be 2r(c)). This property is equivalent to saying that the
graph of a lift of r to R restricted to any rectangle [c — d,¢ + d] x [r(c — 0),r(c + 9)] is
symmetric under rotation by 7 around the center of that rectangle. If the circle is modeled
as 0D C C, then the analogous property is that r(cz) - r(¢/z) is constant for all z € 9D.

Denote by Cj, the midpoint of the segment [Py, Qk+1]. The next proposition asserts that
the graph of T} is centrally symmetric around Cj.

Proposition 4. For all x € S, Ti,(Ck + =) + T (Cx, — z) = —2C.

Proof. In complex (multiplicative) notation, the claim is that T} (Cj 2) - Tx(Cr/2) = 1/C?
for all z € 9D. Since C}, € JD is the midpoint of the counter-clockwise arc of the circle from
Py to Qky1, it satisfies C,f = P - Qk+1 as complex numbers. The isometric circle of T(z)
connects Py to Q41 and consists of those z € D for which T}.(2)| =1, so Py, Q41 € OD
are the complex numbers z, |z| = 1, satisfying

—iy/cos « n elk—1)a 1
z =1.
V1 —cos« v1—cos«

The solutions to this equation are —e'®=Deay and elk~Dog, where w = /1 — cosa +
iy/cos . The product of the two solutions is

P, - Qk+1 _ ei(k—l)aw . ei(k—l)a(_w) _ (ei(k—l)a)2(_ |w|2)
_ efiﬂei(Qka)a — ei((2k72)a7(4972)a) _ (eia)2k74g.
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Since C}, is the midpoint of the smaller of the two arcs comprising OD\{ Pk, Qx+1}, we have
that

Ck — (eia)kug' (3)
To prove Proposition 4, we use the alternative form
C = ei(k’—?g)a _ 6—1(29—1)a€i(k—1)a _ e—i(7r/2)ei(k:—l)o¢ _ _iei(k—l)a

to compute

kil el(l*kﬁ)a(_lel(kfl)az) + l\/@
(—i\/coﬁ)(—iei(kfl)az) + eilk—1)a
(=) .4 24 Jcosa (—1)F  2— Jeosa

citk—Da (—ycosa)z+1  Cy ' (—y/cosa)z +1

T (Ck 2) = (—1)

and then

(-1F 2z —Jcosa >((—1)k 271 — \Jfcosa ): 1
Cr (—y/cosa)z+1 Cr (—/cosa)z"1+1 C?

as claimed. 0

Tk (Crz) - Ti(Ck/2) = (

Corollary 5. For all x € S, Ti(—x) = —Tyg—i(x).
Proof. Applying Proposition 3 repeatedly gives
Ti(x) = Tiqn(z + na) — nfs
for any n € Z, where 8 = (49 — 3)a. Using n = 2g — k we have

Ti(—z) = Tog(—z + (29 — k)a) — (29 — k)3
= —Thy(z — (29 — k)a) — (29 — k)8 by Proposition 4
= —Toy_(k—29)(®) + (29 — k)8 — (29 — k)B = —Tyy_k(7). 0

3. MARKOV MATRICES FOR EXTREMAL PARAMETERS

Definition 6. A parameter choice A = {Aj, ..., Agg_4} with Ag € [Py, Q] is called ex-
tremal if for each k either Ay = Py or A = Q.

Extremal parameters were first introduced in [1], in which several results of [15, 16, 2]
for parameters with “short cycles” were extended to extremal parameters. Note that the
classical cases A = P and A = (@ are examples of extremal parameter choices.

Since for all k = 1,...,89 — 4, f3(P,) and f;(Qr) belong to the set P U Q (see [15,
Proposition 2.2], originally [4, Theorem 3.4]), the partition of S into intervals I, ..., [16—8
given by

-[2]{:71 = [Pkan]a I2k = [kapk+1]7 k= 17 789 - 47
is a Markov partition for f3 for every extremal A. Each extremal A has a transition matrix
M5 = (mi’j) with
e 1 if f;l(Ii) D) Ij
1 0 otherwise,
and an infinite sequence (wo,ws,...) or finite sequence (wp,ws,...,wy) over the alphabet
{1,...,16g — 8} is called A-admissible if all my,, ., , = 1 for all i > 0 (and ¢ < n for finite).
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For each extremal parameter A, we can define the shift space?
X5 ={we{l,..,169 — 8N : w is admissible }

on which we have the left-shift o3 : X34 — X3 and the essentially bijective coding map
¢3 : X4 — S given by

oo
b2) = () £5 (L) (4)
i=0
so that the following diagram is commutative:

94
Xy —2 Xy
Jo
S

In the case where f3 is Markov, the system (X4,03) is a topological Markov chain.

Ia

The following formulas use [2, Proposition 3.1 and Lemma 3.2]. For odd indices 2k — 1,
depending on whether Ay = P, or A = Qr we have, respectively, either
fallag—1) = Te(I2k—1) = [Qok)+1> Qok)+2] = Loo(k)+2 YU lao(k)+3 (5)
or
falar—1) = Te—1(I2k—1) = [Po(i—1)=1, Po(—1)] = [Po(k)+4g—25 Por (k) +49—1] (6)

In either case, f3(lor—1) is the union of two consecutive Markov partition elements. For

= Do (k)+8g—5 U oo (k) +8g—4-

even indices 2k, we know that for any extremal A the image
fallar) = T(I2k) = [Qo(k) 125 Po(k)—1]
20(k)+3

= Do(ky4a U Ioo (k)45 U+ Ulogry—a =S\ U I
=20 (k)3

(7)

is the union of (169 — 8) — 7 = 16g — 15 consecutive intervals on the circle. Recall that the
indices are mod 16g — 8; for example, with g = 2 and k£ = 1 we get

fﬁ([g)2118U119U"'U1102118U119U"'UIQ4U11U"'UIlo.

The matrices Mp and M@ for genus 2 are shown in Figure 2.

Proposition 7. For any extremal A, the mazimal eigenvalue of M is
A=4g—3++/(49g —3)? — 1.

Proof. Gelfand’s Formula [13] states that lim,,

of M, where |- || is any matrix norm. The “entrywise norm” |M}| given by the sum of
(absolute values of) all entries in M7 counts the total number of admissible sequences of
length n + 1, that is,

’M£| = #{ (wo, w1, .oy Wn) t My 0, = Lfori=0,...,n -1}

1/n
’M g H equals the maximal eigenvalue

2In [2] the notation X is used for a space of sofic sequences in 8g — 4 symbols. Here we use it for a
Markov shift on 16g — 8 symbols.
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has an explicit expression of the form
—n
— o1 (K/2+V/(K/2)? ) oo (K/2 V(K27 1)

for some constants ¢; and ¢z, and therefore lim, o (N,)Y/™ = K/2 ++/(K/2)2 — 1. For

N, = ‘Mg) we have exactly this relation with K = 8¢g—6; therefore the maximal eigenvalue

n:4g—3—i— (49—3)2—1. U

Corollary 8. For any extremal A, hiop(f7) = log A

1
of My is Timy oo | M2

Proposition 9. For any extremal A, the right eigenvector v = (v, ..., Vi6g—8), correspond-
ing to the maximal eigenvalue X, normalized so that > v; =1, is given by

1 e
m ’Lf’l 18 Odd
v; =
A—1 i
—~ 1 1 1S even.
A(8g —4)

Proof. From the proof of Proposition 7, for each odd i the set f5(I;) is the union of two
consecutive Markov partition elements, one with an even index and one with an odd index,

and thus
8g—4 8g—4

Y migoi=1 and Y mygpy=1  foroddi. (10)

Similarly, if 4 is even then for any extremal A we know f4(1;) is the union of 8g — 8 odd
indices and 8g — 7 even indices, so

8g—4 8g—4
Z miok—1 =89 —8 and Z Mok =89 — 7 for even 1. (11)
k=1 k=1

We will show that the vector v/ given by
;) A=8g+7 ifiisodd
i 8g—38 if 7 is even
satisfies M40 = A’ by direct calculation. First, note that A = 4g — 34 1/(4g—3)?2 — 1 is
one root of the quadratic equation
AA—8g+7)=A—1. (12)

Then we have
16g—8 8g—4 8g—4

/
(Mzv'); = E mi, v g E :ml 2k~ 1Var_1 + E my 2kU2k
j=1

8g—4 8g—4
=(A—=8g+7) (Z mi,2k—1> (89 —8) (Z m; 2k>
k=1
_J (A=8g+T7)(1) + (8g—8)(1) if 7 is odd
| (A—8¢g+T7)(8g—8) + (8g—8)(8g—7) if i is even
fa=1 if 7 is odd
| AMBg—28) ifiiseven

by (10), (11)



RIGIDITY OF TOPOLOGICAL ENTROPY 10

_f AMA—8g+T7) ifiisodd
a { A(8g — 8) if i is even Y (12)
= \v..
The normalized eigenvector v is then obtained by dividing v’ by
169—8
D )= (8g—4)(A—8g+T7) + (8g—4)(8g—8) = (8g — 4)(A — 1).
i=1

From (12), we have that A(8g — 4) = (A + 1)? and so the coordinates of v are
A=8g+7 A=1)/x 1

’U,L-: =

(Bg—4)(A—1)  (8g—4)(A—1) ABg—4)

for odd ¢ and

(89-7)—1 _ (A=H-1 _1-35 -1
4

UTBg-HA-1) Bg-4(A—1) B8g—4 ABg-4)

for even 1. O

4. CONJUGACY TO CONSTANT-SLOPE MAP

We begin by stating a theorem combining several results of [21, 7], stated here for circle
maps instead of interval maps (as in [18]):

Theorem 10. Given a piecewise monotone, piecewise continuous, topologically transitive
map [ :S — S of positive topological entropy h > 0, there exists a unique (up to rotation
of S) increasing homeomorphism v : S — S conjugating f to a piecewise continuous map
with constant slope e™.

Existence follows from [7, Corollary B], and uniqueness follows from [7, Lemma 8.1, The-
orem 8.2, Corollary 1], where the continuity assumption is replaced by piecewise continuity
(as in [12, 10]).

The map fp : S — S is piecewise monotone, piecewise continuous, topologically tran-
sitive (see [9, Lemma 2.5]), and with positive topological entropy (see Corollary 8), so by
Theorem 10 there exists an increasing homeomorphism ¢ : S — S conjugating it to a map

lp=1po fpoyz

with constant slope, see Figures 3 and 4. The map 15 is unique up to rotation of S,
and the slope of /3 is exactly A = eMor(F5) . Although the existence of a conjugacy to a
constant-slope map holds for fz associated to irregular fundamental polygons as well as
regular, we will assume that F is regular for the remainder of this section.

The map fQ : S = S, just like fp, is piecewise monotone, piecewise continuous, topo-
logically transitive, and with positive topological entropy, so by Theorem 10 there exists
an increasing homeomorphism w@ : S — S conjugating it to a map KQ of constant slope,
unique up to rotation of S. By Corollary 8, both £z and ﬂQ have the same slope.

Because fp and fQ are Markov maps, the conjugacies ¥ and ¢Q follow the classical
construction due to Parry [20, 21] and used in the proof of [7, Lemma 5.1]. For each
extremal parameter A, we define the probability measure p; on X5 as follows: let A\, v be
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37 ] / 3F /
2+ 5 L
1+ 1k
0r o0k
-1 H —1 H
—2 -2
-3 L 1 1l I I / I I =3 L 1 1l I I / I I
-3 —2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIGURE 3. Plots of fz(x) (left) and ¢5(x) (right) for g = 2.

FIGURE 4. Plot of ¢5(x) for g = 2.

the maximal eigenpair for the transition matrix M3; for an A-admissible finite sequence
(wo, ..., wn), we denote the symbolic cylinder

C%wo,...,wn) = {w’ S XA:wZ’- =w; V0<i< n}

and define the measure p5 of this cylinder as
("JOw'»Wn) _ an
ra(Cy )=
The measure p5 is equivalent to the shift-invariant “Parry measure” (the measure of max-
imal entropy; see [20, 21]). The measure p; is not shift-invariant but has the “expanding
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property”
pa(03(C)) = Apa(C)
for all cylinders C' on (X4,05).
Using the measure p5, one constructs the push-forward measure piz‘ on S given by
P5(E) = pa (d);ll(E)) for a Borel set F,

where ¢ : X5 — S is the symbolic coding map (4). With the convention that 1 (0) = 0,
the conjugacy map ¢z : S — S is given by

o p';‘([(),x]) ifx>0
wM@~—%'{¢ﬂ%m)ﬁx<o (13)
(the 27 appears because of our convention that the circle is S = [—m, 7]).

It turns out that the maps 95 and 1/JQ thus constructed coincide:
Theorem 11. For all x € S, Yp(z) = Yg(z).

To prove this, we need to connect the cylinder intervals of the two circle maps fp and
fo- Given an A-admissible sequence w = (wp, w1, ...,w,) With w; € {1,...,16g — 8}, we
define the corresponding A-cylinder interval

I;(le’wI’ woen) = Iwo N fle(le) n---N f;:n(Iwn) (14)

Theorem 12. Let w = (wp, ...,wy) be P-admissible. There exists a Q-admissible sequence
(N0y ey My Mt1) Such that ny = wo, Np+1 is odd, and

(i) if wy is odd then

IEJ _ ISUOv--~77]n777n+l) U ISUOyn-yUmWn-&-l + 1) (15)

P Q Q ’

(ii) if wy, is even then either
16g—14 '
IF%U _ I@("]Owuy"]n) _ U I@("]O,-w"]mQO'(ﬂn/Q)+4+Z) (16)
1=0
or
16g—16
I"J _ I(UO: -~~777n777n+1) I(770’ vy Mns Mn+1 + 1) 1 1(7107 cn M 1’2‘7("";1) +6+ Z) 17
P =1 Ul v U 5 - (1D
=0

The proof of Theorem 12, as well as the distinction between the two forms (16) and (17),
is rather technical and is left for Appendix A.

Proof of Theorem 11. Recall from Proposition 9 that for both A = P and A = Q the
right-eigenvector v of My corresponding to eigenvalue A is

v=rc-(1, A\=1, 1, A—=1, ..., 1, A—1),
where ¢ = 1/(A(8g — 4)) corresponds to p5(S) = 1. We prove ¢p = 95 by showing that
p(15) = p'Q(IT‘;’ ) for all finite P-admissible sequences w. Note that, because ¢; maps a

cylinder interval to a symbolic cylinder, we have

WO, vry Wn Vwy, s Min Unn,
T e

where (wp, ...,wy) is P-admissible and (ng, ..., 7,) is @Q-admissible.
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Let w = (wo, ...,wy,) be P-admissible, and suppose wy, is odd. Then v, = ¢, and so

’ w Vw,, C
piP(IiP) A\ V
By Theorem 12,
w _ gt
IP IQ U IQ

for some 7 = (10, ..., May1) and o' = (Mo, ..., N, Mug1+1). Since 1,41 and n;, ,; have different
parties, we know
Upoiy 0y, = CF (A=1)c = Ac,

and can compute

;oW M 7'\ Unnga U”ZH . 1
PQ(IP) - pQ(IQ U I@ )= Al + Nl I ”ﬂ%+1)
1 c ) w

. . . (1) (16g—15) |
If instead w,, is even, then Theorem 12 gives [ = [ U..- U Ig 7 with exactly

P Q
8g — 7 of the final symbols ns}rl being even (so 8g — 8 are odd). Therefore

Ly = e oYy o
P@(Ip) = P@(IQ U U 0) )= Nl (Un7(11+>1+ + vnlefirm)
1
= Yl ((8g —TYAN=1)c+ (8g — 8)0)
c
=il AA—1) by (12)

A=Dec vy, w
T = o = PpUR):

where v, = (A — 1)c because wy, is even.

In both cases we have p’@(Ig ) = p5(I5), and since { IZ : w is P-admissible } generates
all Borel sets in S, the two measures p’l3 and p’Q on S are identical. From (13), this implies
that ¥p = V. 0

For the remainder of Section 4, we deal almost exclusively with 15, although we will
briefly invoke Theorem 11. We now show that ¢ has translational (Proposition 13) and
central (Proposition 14) symmetry. Both of these properties can be seen in Figure 4.

Proposition 13. For all x € S, Yp(x + o) = Yp(x) + a.

Proof. Define ¢ : S — S recursively by
o) = { Yp(w) if z € [Py, Py)

¢(x — a) + a otherwise.

Thus ¢(x + ) = ¢(x) + « for all x by design, and since ¢ is increasing and continuous, we
also have ¢~ !(z + a) = ¢~ (z) + « for all z.

Denote ' = ¢(x). By induction on 1 < k < 8g — 4, we will prove that there exists by
such that ¢ o Ty, 0 ¢~ (2) = Az’ + by, for 2’ € [P[, P/ ,,]. By construction the claim is true
for kK = 1 since ¢’[P1,P2] = wﬁ’[Pl,Pz]‘ Now assume it is true for k. Then by Proposition 3,
writing 8 = (49 — 3)«, we have

¢po T 00 (1)) = ¢(Tps(2)) = ¢(Th(x — @) + B) = ¢(Ti(x — ) + 8
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= (Tp(dp Ha' =)+ B=Aa" —a) +bp + 5
=\’ + (by + B — Aa)
and so the claim holds for k£ + 1 with bgy1 = b + 8 — Aa.

Thus our map ¢, which satisfies ¢(z+ ) = ¢(x) +« for all x by construction, conjugates
[ to a constant-slope map on S. By the uniqueness of ¢ (Theorem 10), ¢ = 5. O

Notice that ¢p(x + na) = ¢Yp(xr) + na for any integer n, as well as 1/11?31(3; + na) =
1/);1(33) + na. Since 27 is an integer multiple of «, 1 is well defined on S, and we can

choose the point where it is equal to 0 at our convenience. We will assume that 5 fixes
the point Coy = 0. Then Proposition 13 implies that 15(Cy) = Cy, for all k.

Proposition 14. For all x € S, ¥5(Ci + x) + p(Cr — x) = 2C}.

Proof. First, we prove that
Vo) = —Yp(—x). (18)

By Corollary 5 we have Tj(—x) = —Tyy—i(x). Since fp acts by the generator Tj, on
x € [Py, Py11] and f@ acts by the generator Ty,_j on the reflected interval —[Py, Pyy1] =

[Qag—r» Qag—k+1], we have as a result that
fo(z) = —fp(—2).

To prove (18), set & = {(x) := —¢p(—x). Then - = Yp(—2) and —z = 7,/11;1(—5), and

then
o fp ol (@) = E&(fp(@) = &(—fp(—)) = —vp(fp(—2))
=—Ypo fpo w;l(—f) = —Llp(—7).

Since this is a function with constant slope A, the claim (18) follows by uniqueness of the
conjugacy.

Combing (18) with Theorem 11, we obtain ¢z(—2) = —t¢5(x). Because Cj, = (k—2g)a,
Proposition 13 implies

Vp(Ck + ) = Ck + Yp(2)

for all k. Therefore we compute that
Vp(Cr +2) + Yp(Cr — 1) = Cp + p(x) + Cp + Yp(—x) = 2Cy. O

A crucial observation for the proof of Theorem 1 is that 5 conjugates each T} as a
function on the circle S, and the resulting function

Sk = T/JpoTk od)lgl

consists of two linear pieces, one with slope A and the other with slope A~!. See Figure 5,
where

Py = ¢p(P) and Qp :=Vp(Qk).

Lemma 15. The function Si : S — S can be fully described as follows:
(a) Sy is linear on [P}, Q) ] with slope \;
(b) Sy is linear on Q) P}] with slope X71.
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Proof. (a) By construction, Sy, is linear on [P}, P, ) since [Py, Pj11) is the interval where
[ acts as T},. Given the central symmetry of T}, (Proposition 4) and ¢ (Proposition 14)
around C}, the composition Sy = 9p o T}, o w}gl must also be symmetric around Cy. The
image of [P}, P;_ ;] under the symmetry Cy+x + Cp—x is [Q},, @} ], and thus S}, is linear
on [Q}, Q}.41] with the same slope. Since the intervals of linearity [P}, Q)] and [Q}, Q)]
overlap, there is no jump within their union, which is [P}, Q}.,]. We can in fact calculate

Sk(Pr) = ¥p(Ti(Pr)) = ¥p(Qoky+1) = Qo1
Sk(Qpt1) = Vp(Te(Qr11)) = ¥p(Por)) = Py
directly using [15, Proposition 2.2].
(b) Because part (a) holds for all k, we know S, maps [P;(k)’Q;(k)H] linearly to
[Q;(U(k))ﬂ, Pé(a(k))] = [Q} 41, P{] with slope A, and therefore S;(lk) maps [Q, |, P] linearly
to [Pé(k)ﬂQ;(k)H] with slope 1/\. But

Sy = WpoTomovp! ) =ypoT 4 oys! =¢ppoTioys!

is exactly Sk. O

5. PROOF OF THEOREM 1

We can now prove the rigidity of topological entropy, that is, hp(f3) is the same for
all parameters A and for all fundamental polygons F.

Regular polygon. First we prove Theorem 1 in the case where f; is associated to a
regular (8g—4)-gon. Let A = {Ay, ..., Agy_4} consist of any points satisfying Ay € [Py, Q).
Because Sy = v¢p o Tj, o zp; is linear on all of [P}, ;H-l] with slope A, the function
Ypo fzo @ZJ; (note the use of f; with v 3) is piecewise affine with constant slope A, and
so, by [18, Theorem 3’| applied to such maps, the topological entropy of f3 is log A.

3r 3r
2 2 |
'r (P, Qo (i) +1) 'r (P @ ys1)
! /
ol (Qrt1, Poiy) oL (@i Pry)
_1 b —1 -
_o L —2 L
=30 I I I I I I 3L I I I I I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIGURE 5. Plots of Ti(z) (left) and Si(z) (right) with £k =3 and ¢g = 2.
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Teichmiiller space. As explained in [3, Introduction], the Teichmiiller space of a compact
surface of genus g may be viewed as the space of marked (8¢ — 4)-fundamental polygons,
and the partitions of the boundary S for various polygons are related via a homeomorphism
of S by Fenchel-Nielsen Theorem.

Let I' be a Fuchsian group such that f\D is a compact surface of genus g whose fun-
damental (8¢ — 4)-gon F is not regular. As explained in [16], there is a Fuchsian group
I having a regular fundamental (8¢ — 4)-gon F and an orientation-preserving homeomor-
phism h : D — D such that [ = hoTloh L Side k of F extends to a geodesic PkaH
and is glued to side o(k) by the map Tyw = hoTyoh™t, where {T}} are generators of I’
identifying the sides of .

For any A= {Al, . Agg 4} with Ak € [Pk,Qk] we define

fi(@) = Ti(x) if 2 € [Ay, Apia),
Then the map f3 with A = {h~1(A)), ..., hil(ggg_zl)} is associated to the regular funda-
mental polygon, and (correcting a typo in [16])
fg:hof;lohfl.

Since fg is conjugate to f;, we conclude that htop(fg) = hiop(f7) = log A, and this
completes the proof of the main theorem. (In fact, the map ) o h~! with ¢ = Yp from
Section 4 will conjugate f; to a map of constant slope \.)

APPENDIX A. PROOF OF THEOREM 12

We now prove Theorem 12, that is, that each cylinder interval Ilfj can be written as

unions of cylinder intervals Ig (see Figure 6 for the decompositions of Ijgl’ 16) and IIQ’")).

For the remainder of the appendix, we use the term “cylinder” (specifically, “P-cylinder”
and “Q-cylinder”) instead of “cylinder interval” for brevity.

7Ly Igu) 70218) 1.2.10). .. . 128) 7(1,29) Igz,w)
I f f -ttt f f i
~ ' ~ ™ N ~
7:16) 7
P P

FIGURE 6. For g =2, 11,9’””)

as a union of two Q-cylinders (right).

as a union of 17 Q-cylinders (left) and I (1,17)

From (14), we derive a common recursive description of cylinders:

’ y ey n -1 AR R (]
o) g o),
For our particular boundary maps, we have an alternative recursive relation: using the fact

that each T} is bijective on all of S, we can compute

(wo, w1, oy wn) _ (W1, oy wn)

Iy [wo Jo1Up )
for P-admissible w and ( o ( :
WO, W1, ...y W — cy Wn

L = T2y (G )



RIGIDITY OF TOPOLOGICAL ENTROPY 17

for Q-admissible w without the need for an intersection. This is because T w /21 is con-

tracting on II(?M »+%n) and therefore 77> (I (e, ""w")) is already contained in I,,. Note

[wo/2]
the use of ceiling [ ] for P and floor | | for @, owing to the fact that fp acts by Ty on Iog_1
and Iy, while fQ acts by Ty on I and Iogy1, and k = [LQ_I] = (%] = L%J = L%Q—'HJ

The formulas above can be extended recursively to

w —1 — . . = ..
Iy = [wo 21 ° Ty 2107 © T[wn ) /21( ) if wis P-admissible
Ig Lw /2] ° TL:J I TLZ,” /2 j( ) if w is Q-admissible.

Equations (5), (6), and (7) can be interpreted as statements about admissible pairs of
symbols:

e In a P-admissible sequence, an odd symbol 2k — 1 can only be followed by 20 (k) 42
or 20(k) + 3.

e In a Q-admissible sequence, an odd symbol 2k — 1 can only be followed by 20(k) +
8g — 5 or 20(k) + 8g — 4.

e In a P- or Q-admissible sequence, an even symbol 2k can only be followed by a
symbol from {20 (k) + 4,20(k) + 5, ..., 20 (k) — 4}.

In the final item above, and in Lemma 16 below, recall that these values are mod 169 —8;
see the explanation after (7) on page 7. The next lemma expands on the admissible pairs
above and lists some longer admissible words used explicitly in the proof of Theorem 12.

Lemma 16.
(a) For all k, if £ € {2k + 89,2k +8g+1,...,2k +8g — 8} then (2k —1,20(k) +8g —4,()
is Q-admissible.
(b) Forallk, if ¢ € {20(k)+4, 20(k)+5, ..., 20(k)—4} then (2k—1,20(k)+89—5,2k, )
is QQ-admissible.
(c) For allk, if ¢ € {2k+8g—9, 2k +8g — 8} then (2k—1,20(k)+8g9—5,2k —1,20(k) +
8g — 4,¢) is Q-admissible.
The proof of Lemma 16 consists of careful analysis of the transition matrix Mp along
with the useful identities

olk—1)=o0(k) —4g+3 and  o(k—2)=o0(k)+2,
which follow by direct verification (see also [2, Lemma 3.2]).

The following two lemmas establish some relations among the generators {7} } which
will be used in the proof of Theorem 12. We omit the composition notation (writing, e.g.,

1p—1 -1 -1
T T, 41 instead of T} " o Ta(k)+1)‘
Lemma 17 ([15, Lemma 3.2]). T}~ T (i) =T, T (2)+4g g
1 1 1 —1
Lemma 18. Form > 1, T, (T (k)+1Tk+4g 1) (T Ta(k)+4g 3) T, .

Proof. The base case, m = 1, is proven using Lemma 17 twice, the second time for index
o(k)+4g — 2:

1 —1 -1 - 4
T Ty Tivag—1 = T Doty rag—oTirag—1 = T Ty rag—sTi
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Then m > 1 follows by induction:

T (T Tetae )" = T (Tt Titag )™ Tty Trtag
= (T Triysag—s) " T Ty Titag
= (T Ty rag—s) " T Tothysags T
= (Tl;—llT;(i)Hg—?,)mTl;l' O

We are now ready to proceed with an inductive proof of Theorem 12, with the following
refinement of part (ii):

(a) If all wy are even, or if (wy,_1,wy) are even but not of the form (2m,20(m) + 4) for

any m, then I = I(no,~ 2 with N, even, and therefore
16g—14
v ooy Ty 20 nn/2)+4+l)
p=U 5

(b) If w, is even and either w,_; is odd or (wp—1,wyn) = (2m,20(m) + 4) for some m
(but not all w; are even), then 7, is odd and

16g—16
n+1
‘[7(777 777n777n+1) I(T]07’ a77n»77n+1+1) U Ino" ,7]n+1 20(” = )+6+1)
Q U

oE

Y

=0

where 41 = 20([1/2]) + 89 — 5.
We begin with the base case n = 0 for all parts. The original Markov partition sets I;
are both P- and )-cylinders:

For wyg = 2k — 1 odd,
w _ p(2k=1) _ 1(2k—1,20(k)+8g—5) | (2k—1,20(k) + 8g — 4)
I; = IQ = IQ U I@ )

and for wy = 2k even,

w _ (2k) _ (2k,20(k) +4) | 7(2k, 20(k) + 5) (2k,20(k) — 5) | | (2k, 20 (k) — 4)

Iy = IQ IQ Ul U-~~UIQ UI
For some parts of the proof, n = 0 is a sufficient base case, but we do at times implicitly

assume n > 1, so we also provide here a “base case” with n = 1. If wq is even, then

O

(wo,w1) _ y(wo,wi)
Ij:» = IQ ,

and equations (15) and (16) follow immediately when wy is odd, or, respectively, even. If
wo = 2k —1is odd, then w; can be either 20 (k)42 or 20(k)+ 3. We investigate the interval

AR that, notice that Ilgk ~L2o®+3) kal(IQG(kH?)). From relation (6)
written for index (k) + 2, the interval I5,(;)43 itself can be expressed as
Loo(iy13 = Ty 1 (oot 11) 15 Potoky 1)) = Ty o1 [Plr—2) 1492, Pli—2)+49-1]

= T(;(i)+1(12(k—2)+89—5 U Io(k—9)4+8g—4)) = T;(i)H(IQHSg—g U Iopy8g-8))-
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Now we use Lemma 17 to write
Ijg%f 1,20(k) +3) _ Tl oGk )+1(I%+8g 9 U Iojt8g—8)
=T, 1T7(k - 1 (T2 18g—9 U Iog184-8)
= T;;_lT(;(i)+4g_2(I2k+Sg—9 U Iori8g-8)
_ T‘f (I£20(k) +8g — 4,2k +8g —9) | 7(20(k) +8g — 4,2k + 89 — 8))

I(2k71 20 (k) +89 — 4,2k +8g = 9) | | (2k —1,20(k) + 8¢ — 4,2k + 89 — 8)

= UL
which proves (15), that is, part (i), for n = 1.
The other P-cylinder interval L(Qk —L2o(k) +2) ng -D \ ~ 12003 Gince
(2k—1) _ 7(2k—1) _ 7(2k—1,20(k) + 89— 5) | 7(2k—1,20(k) +8g — 4)
I IQ Q U IQ
_ [7( —1,20(k) + 89 — 5,2k — 1) U I£2k —1,20(k) + 89 — 5,2k)
Q Q
2k+8g—8 ( ( :
2k —1,20(k) + 89 — 4,¢
v U 4
{=2k+8g

(2k — 1,20 (k) + 3)

by Lemma 16(a) and, rewriting IP as the union of two Q-cylinders above, we

have
Ilgk ~1,20(k) +2) _ I((;k ~1,20(k) +89 5,2k 1) | I(Qk —1,20(k) + 8g — 5, 2k)
2k+8g—10 ( :
2k —1,20(k) +8g — 4,4
u U & ,
{=2k+8g

proving (17) for n = 1.

»wn) has rank

(w()? . 7W'n)

We proceed now with induction for n > 2. We say that a cylinder L(wo’ B

n + 1. Assume I of rank < n is a union of Q-cylinders as desired; we want I to

P
be a union of Q-cylinders of rank n + 2.

When wy is even, the induction argument is straightforward for both parts. We demon-

strate it for part (i), that is, when w,, is odd. Using the induction hypothesis for I]éwl’ ""w"),

we have

(wo, w1,y .e0ywn) _ —1 (wW1y ey wn)
L - CTUJ()/Q(I]5 ' )
_ waol/2 (I$n1,4~~,nn,ﬁn+1) U L(ﬂh e Ty M1 + 1)) by induction
=1 7M1y s Png1) 1 7oy g1 + 1)
_Two/QIQ UT /QIQ

— (@0, M s Tt 1) UI("J077]17' T g1 + 1)
where the final substitution uses the fact that 71 = wy (from induction) and that the pair
(wo,m) = (wo,w1) is P-admissible if and only if it is Q-admissible (because wy is even, and
the even rows of Mp and My are identical). Part (ii) can be treated similarly.
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We now prove parts (i) and (ii) separately when wy is odd.

(i) From the induction hypothesis,

L(wth,---,wn) I(€1,£2 o bnsEnt1) U I(El &, bnyény1 +1)

P Q

with & = w; and &,4+1 odd. (We use ¢ here instead of 1 because the terms & will not
necessarily be n; for Ijﬁ“’o’ =) from the statement of Theorem 12.) Thus

Iy = fwom(Izéwl’%wgww"))
Mm (Ic(gw17§2»§37-~75n+1) U I(g‘*}l,f%f&uwfn-&-l + 1))
[wo/Q]TLwll/zj (1(52753)“ Ent1) | Ia(f%fs, o €nt1 + 1)>'
Let wy = 2k—1. Then w; must be 20(k)+2 or 20 (k) +3, and either way |w1/2] = o(k)+1,
giving
Ig =T 1T_(k)+1 (I(§2’§3 €nt) | 1(52 €3, €nt1 + 1)) (19)

There are now several cases and sub-cases to consider; these are summarized in Figure 7.

&
P o2
o
2k+8g—9
& o

2k+8g—2 2k+38g—8
2o 1 (2k+8¢-8)

20(k)+3
FIGURE 7. Relevant cases when wp = 2k — 1 is odd (all indices mod 16g — 8).

If & =20 (k)42 then & € {2k+8g—2,2k+8g—1,...,2k+8g—10}, and if & = 20(k)+3
then & is 2k + 8¢9 — 9 or 2k 4+ 8g — 8. Other than when & € {2k + 8¢9 — 2,2k +8g — 1}, we
can apply Lemma 17 to (19) to get

C

I&) — TkjllT*l (1(52’£3z-~~75n+1)

1(52’ 537 ~~~:£n+1 + 1))
P o(k)+49—2\"Q ,

Q
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and then Lemma 16(a) implies

- — (&2,€3, .., €nt1) (&2,8&3, ., 6ny1 + 1)
I* _TLQk 1JTL2a(k)+8g 4J (IQ i UI@ i )

_ 2k = 1,20(k) +89 — 4,62,83, . &n+1) | I(Qk = 1,20(k) +89 — 4,£2,83, -, €41 + 1)
Q
We are left with analyzing the cases £, = 2k+8¢—2 and & = 2k+8g—1, with & = 20(k)+2.
Here |£2/2| = k + 49 — 1 and so we proceed from (19) as

1 - - ({7"'76” ) (g 7"'7{” +1)
IS = T T Tk (15 g gt 20

=T 1Ta(k)+4g 3T (IQ3 o UI@3 o )

using Lemma 18 with m = 1. If £&, = 2k+8g—2, then &3 € {20(k)+2,20(k)+3, ...,20(k) —
6}, and if & = 2k + 8¢ — 1, then &3 is 20(k) — 5 or 20(k) — 4. For all possible palrs (fg, &3)
except (&2,&3) = (2k+8g—2,20(k)+2) and (&2,&3) = (2k+8g—2,20(k)+3), Lemma 16(b)
implies precisely that
w_ 11 —1( 7, ént1) | | 7(€8s i1 +1)
I = TN T g o T (5 p e 210

| — -1 (€35 €nt1) (€35 €nt1 + 1))

_ TL%;JTL g SJTL%J <IQ oL

_ 72k = 1,20(k) + 89 = 5,2k, €5, bnt1) | (26— Lonbngr 1)

O

Now we only need to analyze the cases {3 = 20 (k) + 2 and &3 = 20(k) + 3, where we
have already set & = 2k + 8¢9 — 2 and & = 20(k) + 2.
If &3 = 20(k) + 3, then &4 is either 2k + 8g — 8 or 2k + 89 — 9, and so

IS = TN Tk g o T (5 g ot 20
7T (i)+4g 3T71T;(}€)+1 (I@(£47-~7§n+1) U I((;%m,fnﬂ + 1))
= T Tt 19T Tty ag-2 (Ia(;47 mE)y %54’ bt 1)> by Lemma 17
= T T T Tlirangancs (s 8et)  gleoom € £1)

— I(2k - 1720(k) +8g —5,2k—1, 20(k) +8g — 4,84, ~~~7£n+1) U I£2k -1, "'7‘571“1’1 + 1)
Q

O

by Lemma 16(c).

If & = 20(k) + 2, notice that £5 = &, so we now analyze the situation when the
sequence (&1, ...,&n+1) consists of several alternating entries (20 (k) + 2,2k + 8g — 2) until
some &; ¢ {20(k)+ 2,2k + 8¢ — 2} (this situation is denoted by % in Figure 7). Notice that
J < n+ 1: otherwise, all &1, ...,&, would be even, and then

(617527---7£n717€n7§n+1) (617527---7§n71a6n) (§17€27---7£n717fn)
I@ - I@ ITD

(617527~ 76") _ (w17w27~~~7wn)

would imply I , which is not possible since w,, is odd.

15
We assume j is odd (the case of even j can be treated similarly). Then
)

(51762)"')€n+1) ( ( +2,2k+89—2,,20(k)+2,2k+8g—2,£],,§n+]_),
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where &; is one of {20(k) + 3, ...,20(k) — 6}. Thus

w _ =1 7(€1,€2,€3, - €nt1) (€1, €nt1 +1)
I =1 (15 UI@ )

B _ _ —1)/2 ( (&) rEn (& orbnt1 +1)
=T, (Ta(k)+1Tk+4g 1 (IQ = ULy o )
— 1 (57 7671 (5»75’” +1)

= (AT )T <IQJ +1) U e ) (20)

by Lemma 18. For &; # 20(k) + 3, Lemma 16(b) implies that

b g - G-D/2p-1 (7> nrbnt1) || 7Eromrbnrr +1)
IP :(TV&Q_IJT{MJ)] TL%J (I J + UI 7 +1 >

L(Qk —1,20(k) +8g —5,...,2k — 1,20(k) + 89 — 5,2k, &j, ... Ent1) U L(Qk =1, 6nt1 + 1)
Q Q ’
and for & = 20(k) + 3 we proceed from (20) with
_ (=1 =1 G=1/2=1( 1(&55-s€nt1) (&5 bny1 +1)
I = (T Ty ag-3) Ty (I@J o )
- -1 (j_l)/2 1 — (5 IR 7571 ) (5 IR )g’n +1)
= (Tk—lTo(k)+4g—3) T, T (k)+1<I o o UI ’ " )
= (Go1 Ty g N R o(k)+4g— 2(I sy e )
_ Ic(g k—1,20(k)+8g—5,....2k = 1,20(k) + 89 — 4,&;+1, -, €n+1) U I( E—1,.. &1+ 1),

using Lemma 17 for a substitution and then Lemma 16(a) for the final line since, following
£ = 20(k)+3, we know £ is either 2k —8¢g — 9 or 2k — 8¢ — 8. Having followed all paths
in Figure 7, this completes the proof of part (i).

(ii) When wy, is even, there are two possible structures, (16) and (17), for the decomposition
of I, corresponding to the two cases (a) and (b) on page 17.

(a) First, if all w; are even then II%J = Ig because the even rows of Mp and Mg coincide.

Then I]%" can be trivially decomposed into 16g — 15 cylinders of higher rank as in (16).

If (wp—1,wy) are both even and not of the form (2m,20(m) + 4) for any m, then, from
the induction hypothesis for case (a), there exists a Q-admissible sequence (£1,&o, ..., &n)
such that

Iﬁgwl,&& ,Wn) 1(51752 1§n)

i

Q
with &, even. Now the analogue of relation (19) is

L_TlT1

o(k)+1 e )

JiSE
Q
The sequence (£1,£2,...,&,) cannot consist entirely of alternating even entries (20(k) +
2,2k + 8g — 2): if this were the case, then

16(251’52""’5") = 1;51752"“’5“), S0 (w1, w2, ...,wn) = (€1, &2, -, &n),

which is impossible because the last two entries (w,—1,wy) are not of the form (2m, 20 (m)+
4). One can then proceed as in case (i) and express Ili__‘,’ as a single Q)-cylinder of rank n+ 1,

which is then a union of 16g — 15 Q-cylinders of rank n + 2 as desired.
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(b) If wy—1 is odd or the final pair (wn—1,ws) = (2m,20(m) + 4) for some m, then we
have (17), as will we now show.
We follow the proof of (i), where a stricter key step j < n will now follow from the new
assumptions. Indeed, from the induction hypothesis for case (b),
(w1, w2, ...ywn) &1y €ny Ent) &1y ényént1 + 1) 10910 (51,...,§n+1,20(5"7+1)+6+i)
I =1 Ul SHUR"

i=0
where & = w1, &, is odd, and &,+1 = 20(|&,/2]) +8g—5. The analogous statement to (19)
is now
(€2, &nt1) | | (€256 1) 71 a1 20 (8250 64
w _ p—1p—1 2y s Ent1 2,y &nt+1 + 2y, &nt1, 20 (35— ¢
=110 (1 oL o U5 2 ).
i=0
Notice that it is not possible for the sequence (&1, &, ..., &,) to consist entirely of alternating
entries (20(k) + 2,2k + 8g — 2) because &, is odd. Nor can the sequence (1,82, ...,&, + 1)

consist entirely of such alternating even entries because then (§,-1,&,) would not be Q-
admissible.
Therefore, there exists j < n such that the sequence (&1, ..., &;) stops alternating between

20(k) + 2 and 2k + 8g — 2. We can then express each Tk_lTO__(i)+1 (Ia(f?"")) above as a Q-

cylinder of rank n + 2, thus making IT‘;’ a union of 2+ (16g — 17) = 16g — 15 Q-cylinders of

rank n + 2. This does not affect the last two entries of the Q-cylinders from the induction
hypothesis, so the structure of the decomposition is as needed.
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