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Abstract. Closed geodesics associated to conjugacy classes of hyperbolic matrices in SL(2,Z)
can be coded in two different ways. The geometric code, with respect to a given fundamental
region, is obtained by a construction universal for all Fuchsian groups, while the arithmetic code,
given by “–” continued fractions, comes from the Gauss reduction theory and is specific for
SL(2,Z). In this paper we give a complete description of all closed geodesics for which the two
codes coincide.

0. Introduction. The group PSL(2,R) = SL(2,R)/{±1} acts on the upper half-plane
H = {z ∈ C | Im z > 0} by Möbius transformations:

z → az + b

cz + d
,

which are orientation–preserving isometries of H endowed with the hyperbolic metric.
This action extends to the Euclidean boundary of H, R ∪∞, by the same formula. The
fixed points of γ ∈ PSL(2,R) are found by solving z = γ(z) = az+b

cz+d . If the corresponding

matrix A =
(
a b
c d

)
is hyperbolic (i.e. | trA| > 2), γ has two hyperbolic fixed points in

R ∪∞, which are the roots of the quadratic polynomial

(0.1) QA(z, 1) = cz2 + (d− a)z − b = 0

of discriminant D = (a + d)2 − 4 > 0. One point, denoted by w, is attracting (A′(w) =
1

(cw+d)2 < 1) and the other, denoted by u, is repelling (A′(u) > 1). An oriented geodesic in
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H from u to w, called the axis of γ and denoted by C(γ), is clearly γ–invariant, and does
not change if we choose the matrix −A instead of A. If γ belongs to a Fuchsian group
Γ, i.e. a discrete subgroup of PSL(2,R) (for necessary information see e.g. [6]), its axis
becomes an oriented closed geodesic in the quotient–space Γ\H. If two elements γ1 and
γ2 are conjugate in Γ, i.e. γ1 = γγ2γ

−1 for some γ ∈ Γ, then γ maps the axis of γ2 to the
axis of γ1, hence they represent the same oriented closed geodesic in Γ\H. Conversely,
every oriented closed geodesic in Γ\H represents the conjugacy class of a primitive (i.e.
not a power of another) hyperbolic transformation in Γ. In what follows closed geodesics
will be always considered oriented.

Let Γ be a finitely generated Fuchsian group of the first kind. The idea of coding
geodesics with respect to a given Dirichlet fundamental region D for Γ, goes back to
Morse [8] (see also [9, p. 104]). A Dirichlet region for such a Γ always has an even
number of sides which are identified by generators of Γ which we denote by {γi}. We
label the sides of D by elements of the set {γi} as follows: if a side s is identified in D
with the side γj(s), we label the side s by γj . By labeling all the images of s under Γ
by the same generator γj we obtain the labeling of the whole net N of images of sides
of D, such that each side in N has two labels corresponding to the two images of D
shared by this side. Any oriented geodesic in H may be coded by a (two-sided) sequence
of generators of Γ which label the successive sides of N it crosses; at each crossing we
choose the label corresponding to the image the geodesic enters. We describe the coding
sequence of a geodesic in the assumption that it does not pass through the vertices of the
net N . We may assume that the geodesic intersects D and choose an initial point on it
inside D. After exiting D, the geodesic enters a neighboring image of D through the side
labeled, say, by γ1 (see Fig. 1). Therefore this image is γ1(D), and first symbol in the
code is γ1. If it enters the second image of D through the side labeled by γ2, the second
image is (γ1γ2γ

−1
1 )(γ1(D)) = γ1γ2(D), and the second symbol in the code is γ2, and so on.

Thus we obtain a sequence of all images of D crossed by our geodesic in the direction of
its orientation: D, γ1(D), γ1γ2(D), . . . . If a geodesic is the axis of a primitive hyperbolic
element γ ∈ Γ, we have

(0.2) γ = γ1γ2 . . . γn

for some n. In this case the sequence is periodic with the least period [γ1, γ2, . . . , γn].
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By mapping the oriented geodesic segments between every two consecutive crossings
of the net N back to D (as shown in Fig. 1), we obtain a geodesic in D. The coding
sequence described above may be obtained by taking inverses of the generators labeling
the sides of D the geodesic hits consequently. The axis of a primitive hyperbolic element,
C(γ) becomes a closed geodesic in D. If the geodesic passes through a vertex of D, an
ambiguity appears in assigning a code to it. We do not elaborate on this point since in
the case of SL(2,Z) the ambiguity can be removed, as is explained below.

If two hyperbolic elements are conjugate in Γ, their closed geodesics in D coincide, and
hence the periods in their coding sequences differ by a cyclic permutation. Conversely, if
two primitive hyperbolic elements have the periods in their coding sequences that differ by
a cyclic permutation, by (0.2) they are conjugate in Γ, and hence their closed geodesics
coincide. We call the period of the coding sequence of C(γ) with respect to a given
Dirichlet region, up to a cyclic permutation, the Morse code of a closed geodesic associated
to the conjugacy class of γ, and denote it by [γ] = [γ1, γ2, . . . , γn]. The axis of the
inverse transformation, C(γ−1), is the same geodesic as C(γ), but oriented in the opposite
direction. It is easy to see that its Morse code is given by [γ−1] = [γ−1

n , γ−1
n−1, . . . , γ

−1
1 ]. The

Morse code of a matrix A, denoted also by [A], is the Morse code of the corresponding
Möbius transformation.

The Morse code of a matrix A ∈ SL(2,Z) with respect to the standard fundamental
region F = {z ∈ H | |z| ≥ 1, |Re z| ≤ 1

2} can be described as a finite sequence of integers.
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Figure 2

It is convenient to regard F (see Fig. 2) as a quadrilateral rather than a triangle, with
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the point i separating two sides, the arcs of the unit circle. The left vertical side v1 is
identified with the right one v2 via the transformation T (z) = z + 1, and the two arcs of
the unit circle, denoted respectively by a1 and a2, are interchanged by the transformation
of order two S(z) = −1/z which fixes i. According to our convention the side v1 is
labeled by T , v2 is labeled by T−1, and both a1 and a2 are labeled by S (see Fig. 2).
In this particular situation the Morse code [A] is a periodic sequence of symbols T , T−1,
and S. It is easy to see that it must contain at least one S, an S cannot be followed
by another S, and a T cannot be followed by a T−1 and vice versa. Therefore [A] is a
finite sequence of blocks, defined up to a cyclic permutation, consisting of T ’s and T−1’s
that are separated by S’s. Since it cannot both start and end by an S, we will always
assume that it ends by an S. To each block of T ’s we assign a positive integer equal to
its length, and to each block of T−1’s we assign a negative integer whose absolute value
is equal to its length. Thus we obtain a finite sequence of integers [n1, n2, . . . , nm], called
the geometric code of A and also denoted by [A], which classifies closed geodesic on the
modular surface PSL(2,Z)\H. The coding sequence of a geodesic passing through the
vertex ρ of F in the clockwise direction is obtained by the convention that it exits F

through the side v2. The axis of A4 =
(

4 −1
1 0

)
, passing through the vertex ρ, and the

corresponding closed geodesic in F are shown in Fig. 2. According to our convention, its
Morse code is [T, T, T, T, S], and its geometric code is [4].

The idea of using continued fractions to study the modular group PSL(2,Z) and
geodesics on the modular surface occurred in [2] and [4], and was developed in [10].
Related ideas appear in [11] and [1]. In this paper we use “–” continued fractions to
produce another code classifying closed geodesics on the modular surface (Proposition
2.2) which comes from the Gauss reduction theory. It is a finite sequence of integers
(n1, . . . , nm) with ni ≥ 2 also defined up to a cyclic permutation. We call it the arithmetic
code of the conjugacy class of A and denote it by (A). The exact definitions are given in
§2. Theorem 2 give a complete description of all closed geodesic for which the geometric
and arithmetic codes coincide.

Suppose we have a set of elements with an equivalence relation. In the most general
terms, a reduction theory is an algorithm for finding canonical representatives in each
equivalence class. Such representatives are called “reduced” elements. Each equivalence
class contains a canonical (finite and non–empty) set of reduced elements which form a
cycle in a natural way, and following the reduction algorithm one can pass from a given
element within its equivalence class to a reduced one in a finite number of steps. Applying
the same algorithm to a reduced element, one obtains consequently all reduced elements
in its cycle.

In the reduction algorithm for co-compact Fuchsian groups described in [5] all elements
whose axes intersect a given fundamental region D are called “reduced”. The cycle of
Γ–conjugate reduced elements consists of all reduced elements with the same Morse code,
and the intersections of their axes with D comprise the closed geodesic associated to this
particular conjugacy class.

A complete account of the Gauss reduction theory for indefinite integral binary qua-
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dratic forms and its relation to the theory of “–” continued fractions is given in Za-
gier’s book [12, Chapter 13]. It can be translated into the matrix language as fol-
lows. To each integral binary quadratic form of discriminant D > 0 corresponds a
geodesic in H which connects the roots of the corresponding quadratic equation. Its
image in PSL(2,Z)\H is closed since there exists a hyperbolic matrix A ∈ SL(2,Z)
with the same axis (the set of integral matrices having this axis is a real quadratic field
Q(
√
D), where A corresponds to a non-trivial unit of norm 1). Conversely, we asso-

ciate to a hyperbolic matrix A =
(
a b
c d

)
∈ SL(2,Z) an integral binary quadratic form

QA(x, y) = cx2 + (d− a)xy− by2 of discriminant D = (a+ d)2 − 4 > 0 which has already
appeared in (0.1). Two matrices with the same trace are conjugate in SL(2,Z) if and
only if the corresponding quadratic forms (with the same discriminant) are equivalent in
the narrow sense, i.e. via a matrix from SL(2,Z). Thus the two theories are equivalent.
The Gauss’s notion of a “reduced” binary quadratic form translates into the following
notion of a “reduced” matrix which is not connected with any particular fundamental
region.

Definition. A hyperbolic matrix in SL(2,Z) is called reduced if its attracting and re-
pelling fixed points, denoted by w and u respectively, satisfy

(0.3) w > 1, 0 < u < 1.

Definition. The set of reduced matrices conjugate to a given matrix A is called the
A–cycle.

In §2 we show that for any hyperbolic matrix A ∈ SL(2,Z) the A–cycle consists of
all reduced matrices B such that (B) = (A), is finite and non–empty (Proposition 2.5),
and that any m–tuple of integers (n1, . . . , nm) with ni ≥ 2 is an arithmetic code of some
explicit A–cycle (Corollary 2.9)

Definition. Let D be any fundamental region for SL(2,Z). A hyperbolic matrix in
SL(2,Z) is called D–reduced if it is reduced and its axis intersects D.

In what follows D will be either the standard fundamental region F (see Fig. 2) or
one of its images under SL(2,Z).

Definition. A hyperbolic matrix A in SL(2,Z) is called totally F–reduced if all matrices
in the A–cycle are F–reduced.

Since the direction of the axis of a hyperbolic transformation is not conjugacy invariant,
some segments of a closed geodesic in F may be oriented clockwise, and the others –
counter–clockwise (see an example in Fig. 3). A case when all segments are clockwise
oriented is special and is identified in Theorem 1.

Theorem 1. Let A ∈ SL(2,Z) be a hyperbolic matrix. The following statements are
equivalent:

(1) A is totally F–reduced.
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(2) The arithmetic and geometric codes of A coincide.
(3) All segments comprising the closed geodesic in F corresponding to the conjugacy

class of A are clockwise oriented.

Fig. 3 gives an illustration to Theorem 1. It shows the closed geodesic in F for the

matrix A =
(

15 −8
2 −1

)
. Its attracting fixed point w = 4 + 2

√
3 has a pure periodic “–”

continuous fraction expansion w = (8, 2), hence (A) = (8, 2). The matrix A itself is not
F–reduced since u > 1

2 , and hence its axis does not intersects F , therefore A is not totally
F–reduced. The closed geodesic in F corresponding to the conjugacy class of A, shown in
Fig. 3, consists of 10 oriented geodesic segments: segments numbered 1–7 are clockwise
oriented while segments numbered 8–10 are oriented counter–clockwise. Following the
closed geodesic in F we obtain its geometric code [A] = [6,−2], which is different from
its arithmetic code (A) = (8, 2).

1

2
3

4

5
6

7

8

9

10

Figure 3

Here are two more examples of reduced matrices which are not totally F–reduced:

for A =
(

14 −3
5 −1

)
, (A) = (3, 5), but [A] = [−1, 1,−1, 3];

for A =
(

65 −17
23 −6

)
, (A) = (3, 6, 4), but [A] = [−1, 1,−1, 5, 3].

The following theorem gives a necessary and sufficient condition for a matrix to be
totally F–reduced in terms of its arithmetic code.

Theorem 2. Let (A) = (n1, . . . , nm). A is totally F–reduced if and only if 1
ni

+ 1
ni+1
≤ 1

2
for all i (mod m), i.e. the arithmetic code (A) does not contain 2 and the following pairs:
{3, 3}, {3, 4}, {4, 3}, {3, 5}, and {5, 3}.
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An outline of the paper is as follows. In §1 we review the theory of “–” continued
fractions [12]. In §2 we give a geometric interpretation of the Gauss reduction theory
applied directly to matrices and prove that any arithmetic code is realized on a reduced
matrix. Finally, in §3 we prove Theorems 1 and 2.

This paper was written during my visit to the Mathematics Research Centre at the
University of Warwick in July 1994. I would like to thank the institute for their hospi-
tality, financial support and excellent working conditions. The codes and graphics were
produced using Matlab package.

1. The theory of “–” continued fractions. Let n0, n1, n2, . . . be a sequence of
integers satisfying n1, n2, · · · ≥ 2. Following Zagier [12] we denote by (n0, n1, . . . , ns) the
finite “–” continued fraction

(n0, n1, . . . , ns) = n0 −
1

n1 −
1

n2 −
1

. . . −
1
ns

and by (n0, n1, n2 . . . ) the limit lims→∞(n0, n1, . . . , ns) whose existence is easily estab-
lished. Conversely, every real number α has a unique “–” continued fractions expansion
α = (n0, n1, n2, . . . ) with ni ∈ Z and n1, n2, · · · ≥ 2, by setting n0 = [α] + 1, and, induc-
tively, ni = [αi] + 1, αi+1 = 1

ni−αi . This gives a one–to–one correspondence between the
set of real numbers α and the set of infinite sequences (n0, n1, n2 . . . ) with ni ∈ Z and
n1, n2, · · · ≥ 2. Under this correspondence the following statements are true:

(1.1) α is rational if and only if from some point on all the ni’s are equal to 2;
(1.2) α is a quadratic irrationality, i.e. a root of a quadratic polynomial with coefficients

in Z, if and only if its “–” continued fraction expansion is eventually periodic, i.e.
from some point on the ni’s repeat periodically: α = (n0, n1, . . . , nk, nk+1, . . . , nk+m)
(the line over nk+1, . . . , nk+m signifies that those numbers repeat periodically and
that m is the least period);

(1.3) α has a purely periodic “–” continued fraction expansion if and only if α > 1,
and 0 < α′ < 1, where α′ is conjugate to α, i.e. it is the other root of the same
quadratic polynomial as α is;

(1.4) if α = (n1, . . . , nm), then 1
α′ = (nm, . . . , n1).

Property (1.3) is extremely important. It gives an equivalent definition of the reduced
matrix: a matrix is reduced if and only if its attracting fixed point has a purely periodic
“–” continued fraction expansion.

The following property is crucial for our purposes; it shows that the period of a “–”
continued fraction expansion is a complete system of SL(2,Z)–invariants (just as the
period of an ordinary continued fraction expansion is a complete system of GL(2,Z)–
invariants, a standard fact, see e.g. [3, p. 142]).
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Proposition 1.1. Two quadratic irrationalities are obtained from one another by an
application of a transformation from SL(2,Z) if and only if the periods in their “–”
continued fraction expansions are cyclic permutations of one another.

Proof. If two quadratic irrationalities have periods in their “–” continued fraction expan-
sions, which are cyclic permutations of one another, one can be obtained from another by
consequent applications of transformations T (z) = z+1, T−1(z) = z−1, and S(z) = −1/z.
Since those transformations are in SL(2,Z), the claim in this direction follows. Since the
transformations S and T generate SL(2,Z) (see e.g. [6, p. 74]), it is sufficient to prove
the converse only for these particular transformations. Let w be a quadratic irrationality:

w = (n0, n1, . . . , nk, nk+1, . . . , nk+m).

This representation is not unique: we can extend the part before the period by adding a
period to it if we need to. Then obviously

T±1(w) = (n0 ± 1, n1, . . . , nk, nk+1, . . . , nk+m).

In order to deal with S we first notice that if n0 ≥ 2, then

S(w) = (0, n0, n1, . . . , nk, nk+1, . . . , nk+m)

which is a legitimate “–” continued fraction expansion. We remind that the following
relations between S and T hold (in fact, these relations define SL(2,Z), but we do not
use it here):

S2 = Id, STSTST = Id,

where Id denotes the identity transformation. In the next argument we use the following
consequences of the second relation:

STS = T−1ST−1, ST−1S = TST,

and for p ≥ 2
ST−pS = TS T 2S . . . T 2S︸ ︷︷ ︸

p−1 times

T.

If n0 ≤ −1 we obtain

S(w) = (1, 2, . . . , 2︸ ︷︷ ︸
−n0−1 times

, n1 + 1, n2, . . . , nk, nk+1, . . . , nk+m).

If n0 = 0, we have
S(w) = (n1, . . . , nk, nk+1, . . . , nk+m).

Now let n0 = 1. If n1 ≥ 3, we have

S(w) = (−1, n1 − 1, n2, . . . , nk, nk+1, . . . , nk+m).

Since w is irrational, there is a ni in the period that is greater than 2, so we suppose that
ns ≥ 3, and ni = 2 for all 1 ≤ i ≤ s− 1. Then

S(w) = (−s, ns − 1, . . . , nk, nk+1, . . . , nk+m). �
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2. Reduction Theory for SL(2,Z) and factorization of reduced matrices. In or-
der to understand the connection between the geometric and arithmetic codes we present
here an equivalent of Gauss reduction theory for matrices in SL(2,Z).

We will need the following standard fact, the proof of which we include for the sake of
completeness.

Lemma 2.1. Let Γ be a Fuchsian group, γ1, γ2 ∈ Γ hyperbolic elements having a common
fixed point. Then their second fixed points also coincide, hence they have the same axis,
and both are powers of a primitive matrix with the same axis.

Proof. By a standard conjugation we may assume that both γ1 and γ2 fix the ∞, so

γ1(z) = λz (λ > 1), and γ2(z) = µz + k (µ 6= 1, k 6= 0).

Then
γ−n1 γ2γ

n
1 (z) = λ−n(µ(λnz) + k) = µz + λ−nk.

Hence ‖γ−n1 γ2γ
n
1 ‖ =

√
µ2 + λ−2nk2 + 1 is bounded as n → ∞, and hence the sequence

{γ−n1 γ2γ
n
1 } contains a converging subsequence of distinct terms, a contradiction with

discreteness of Γ. Therefore k = 0, and hence both γ1 and γ2 fix 0. �
Now we can characterize the conjugate matrices in SL(2,Z).

Proposition 2.2. Two hyperbolic matrices A and B in SL(2,Z) with the same trace are
conjugate in SL(2,Z) if and only if their attracting (repelling) fixed points have periods
in their “–” continued fraction expansions that are cyclic permutations of one another.

Proof. Let wA and wB be attracting fixed points of A and B respectively, such that their
periods in “–” continued fraction expansion differ by a cyclic permutation. Then by
Proposition 1.1 there exists C ∈ SL(2,Z) such that wA = CwB . Then matrices CBC−1

and A have the same fixed point wA, and by Lemma 2.1, since they have the same trace,
either CBC−1 = A or CBC−1 = A−1. Since both wA and wB are attracting, wA is
attracting for both, A and CBC−1, and therefore CBC−1 = A. Conversely, suppose
two matrices in SL(2,Z) are conjugate. Then their attracting fixed points wA and wB
are obtained from each other by an application of a matrix C ∈ SL(2,Z). Then by
Proposition 1.1 the periods in “–” continued fraction expansions of wA and wB differ by
a cyclic permutation. �

Thus, in addition to the geometric code described in the Introduction, we obtain two
other invariants of a closed geodesic, also defined up to a cyclic permutation: the periods
of the “–” continued fraction expansions of its attracting and repelling fixed points. The
first invariant, which we call the arithmetic code of A and denote by (A), coincides with
the geometric code for a large class of closed geodesics identified in Theorem 2. The
second is the arithmetic code of the inverse matrix (A−1) which corresponds to the same
closed geodesic with the opposite orientation. Notice that if A is reduced, the relation
(1.4) holds.

The following lemma describes reduced matrices in terms of their entries.
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Lemma 2.3. Let A =
(
a b
c d

)
be a matrix in SL(2,Z) with a+ d > 2. A is reduced if

and only if c > 0, a+ b− c− d > 0, and b < 0. For a reduced A with the attracting fixed
point w we also have

(i) a > 0, c+ d > 0, d ≤ 0;
(ii) a+b

c+d < w < a
c .

Proof. Suppose A is reduced. Since a + d > 0, the attractive and repelling fixed points
w and u are given by

w =
a− d+

√
D

2c
and u =

a− d−
√
D

2c
.

Since for a hyperbolic matrix in SL(2,Z) c 6= 0, (0.3) implies c > 0, |a− d− 2c| <
√
D,

which in its turn implies a+ b− c−d > 0, and b < 0. Conversely, the first two conditions
imply |a − d − 2c| <

√
D, hence w > 1, and u < 1. The first and the third imply

|a− d| >
√
D, and since a− d > c− b > 0, we obtain u > 0.

Since a+ d >
√
D, a

c > w > 1, hence a > 0. We have

QA(
a+ b

c+ d
, 1) =

c+ d− a− b
(c+ d)2 < 0

since the expression in the numerator is negative, hence by (0.3) a+b
c+d < w, which proves

(ii). Moreover, 1
c+d = a

c
− a+b

c+d > 0, hence c + d > 0. Since bc ≤ −1, ad = 1 + bc ≤ 0,
hence d ≤ 0, and (i) follows. �
Corollary 2.4. Let A be a reduced matrix with the attracting fixed point w. Then,
considered as a function on R ∪∞, A(x) is increasing for x > 1. For any fixed number
x > 1 the sequence {An(x)} (converging to w) is decreasing if x > w and is increasing if
1 < x < w.

Proof. Let A(x) = ax+b
cx+d . For x > − d

c , A(x) is an increasing, concave–up function with
a horizontal asymptote y = a

c . Notice that A(x) < x for x > w and A(x) > x for
1 < x < w. The assertion follows since, by Lemma 2.3 (i), − d

c < 1. �
Proposition 2.5 (Reduction Algorithm). There is a finite number of reduced ma-
trices in SL(2,Z) with a given trace t, |t| > 2. Any hyperbolic matrix in SL(2,Z) with a
trace t can be reduced by a finite number of standard conjugations. Applied to a reduced
matrix A, this conjugation gives another reduced one. Any reduced matrix conjugate to
A is obtained from A by a number of standard conjugations. Thereby the set of reduced
matrices is decomposed into disjoint cycles of conjugate matrices.

Proof. The proof of the first assertion is an adaptation of the proof in [12] for matrices.

We give it here for the sake of completeness. Suppose A =
(
a b
c d

)
is reduced. Let
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k = a− d− 2c. It was shown in the proof of Lemma 2.3 that |k| <
√
D, and hence k can

take only finitely many values for a givenD = t2−4. We have D−k2 = 4c(a+b−c−d) > 0,
hence c |D−k2

4 and also can take only finitely many values. We express a, b, and d in terms
of c and k as follows:

a =
t+ k + 2c

2
,

b =
D − k2

4c
− (k + c),

d =
t− k − 2c

2
.

and thus obtain the finiteness of the number of reduced matrices with a given trace t.
The attracting fixed point of A has a “–” continued fraction expansion

(n0, n1, . . . , nk, nk+1, . . . , nk+m)

where the notations are as in (1.2). Conjugating A by S−1T−n0 we obtain a matrix
A0 = S−1T−n0ATn0S, and inductively, Ai = S−1T−niAi−1T

niS for i = 1, 2, . . . . The
attracting fixed point of the matrix

Ak = (S−1T−nkS−1 . . . T−n1S−1T−n0 )A(ST−nkS . . . T−n1ST−n0)−1,

w, has a purely periodic “–” continued fraction expansion w = (nk+1, . . . , nk+m), and
according to (1.3), w > 1, 0 < u < 1, i.e. Ak is reduced. Applying the same procedure
to Ak we obtain m reduced matrices in a sequence corresponding to the period of w.
Conversely, if two reduced matrices are conjugate, their attracting fixed points have pure
periodic “–” continued fraction expansions whose periods, by Proposition 2.2, differ by
a cyclic permutation. Hence they belong to the same cycle and are obtained from one
another by a number of standard conjugations. �
Remark. Proposition 2.5 asserts the finiteness of the number of conjugacy classes of
matrices in SL(2,Z) with a given trace t, which corresponds to the class number of the
real quadratic field Q(

√
t2 − 4) (in the narrow sense), a standard and very important

fact in number theory. This fact, however, is much more general, it is valid for all
Fuchsian groups of the first kind. For the co–compact Fuchsian groups it follows from
the expansiveness of the geodesic flow and can be found e.g. in [7, p.p. 212, 549, 569–70].

Our next goal is to show that any arithmetic code is realized on some reduced matrix
in SL(2,Z) giving thus a variety of examples. The main step is Proposition 2.6, whose
proof is an adaptation of the proof in [12] for quadratic forms.

Proposition 2.6. Let n1, . . . , nm ≥ 2 be integers, and A =
(
a b
c d

)
be a primitive

hyperbolic matrix with a positive trace and the attractive fixed point

(2.1) w = (n1, . . . , nm).
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Then it can be represented in the form

A = Tn1STn2S . . . T nmS,

where T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Proof. First we need a technical lemma.

Lemma 2.7. Let n ≥ 2 be an integer, A =
(
a b
c d

)
∈ SL(2,Z), and w a real number

such the following conditions are satisfied:
(2.2) c, c+ d > 0,
(2.3) n− 1 < w < n,
(2.4) a+b

c+d < w < a
c
.

Then n− 1 < a
c
≤ n.

Proof. The left inequality follows immediately. Suppose n < a
c
. Then

a+ b

c+ d
< n <

a

c
.

But then ac+ bc < nc(c+ d) < ac+ ad in contradiction with ad− bc = 1. �

Let A0 = A, w0 = w, As = S−1T−ns . . . S−1T−n1A =
(
as bs
cs ds

)
, and

(2.5) ws = S−1T−ns . . . S−1T−n1w0 = (ns+1, . . . , nm, n1, . . . , ns)

We are going to prove by induction that As, ws, ns+1 satisfy (2.2)–(2.4) for 0 ≤ s < m,
and Am = 12, the identity matrix. Since

AsA(As)−1 = (S−1T−nsS−1 . . . S−1T−n1 )A(S−1T−nsS−1 . . . S−1T−n1 )−1,

we see that ws is the attractive fixed point of AsA(As)−1. It has a pure periodic “–”
continued fraction expansion. For s < m it is different from w0 since m is the least
period of w0, which implies that As 6= 12 for s < m. It follows that for all 0 ≤ s < m,
cs 6= 0. Otherwise we would have asds = 1, which implies As(z) = z + b, b ∈ Z, and the
second fixed point, w′s = w′0 + b stays between 0 and 1 only if b = 0.

The induction hypothesis holds for A0 = A, w0 = w, and n1: n1 − 1 < w < n1 gives
(2.3), and (2.2) and (2.4) follow from in Lemma 2.3. Suppose the induction hypothesis
holds for 0 < s − 1 < m. Then by Lemma 2.7 for As−1 we have cs = nscs−1 − as−1 > 0
and

(2.6) cs < cs−1.
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Also cs + ds = ns(cs−1 + ds−1) − (as−1 + bs−1) > 0 by (2.3) and (2.4) for As−1, thus
condition (2.2) for As follows. Condition (2.3) for As follows from (2.5). We have as

cs
=

S−1T−ns( as−1
cs−1

), and as+bs
cs+ds

= S−1T−ns( as−1+bs−1
cs−1+ds−1

), and condition (2.4) for As follows from
(2.4) for As−1 and the fact that the function S−1T−ns(x) = 1

−x+ns
is increasing for x < ns.

By (2.6) we see that the coefficient cs (an integer!) is decreasing monotonically with s,
until it attains 0. It remains to show that cm = 0. Suppose cm > 0; then by (2.6) we still
have cm < cm−1 < c. On the other hand, AmA fixes w0, hence by Lemma 2.1 it is equal
to An for some n ∈ Z. The following lemma delivers a contradiction, hence AmA = 12.

Lemma 2.8. Let A =
(
a b
c d

)
be a hyperbolic matrix with c > 0, and for n ∈ Z,

An = A =
(
an bn
cn dn

)
. Then for n 6= 0 either cn > c, or cn < 0.

Proof. Since all transformations in {An | n ∈ Z} except for the identity have the same
axes, the corresponding quadratic polynomialsQAn must be multiples ofQA, and therefore
for some λn, cn = cλn, bn = bλn, and an − dn = (a − d)λn. Let us denote trA = t, and
trAn = tn. Comparing discriminants of QAn and QA we obtain

λ2
n =

t2n − 4
t2 − 4

.

Let µ > 1 and 1
µ < 1 be the eigenvalues of A. Then t = µ + 1

µ and tn = µn + 1
µn , and

hence
tn − t = µ−n(µn−1 − 1)(µn+1 − 1) > 0,

which implies |λn| > 1, and cn > c or cn < 0. �
This completes the proof of Proposition 2.6. �

Corollary 2.9. Let n1, . . . , nm ≥ 2 be integers, T =
(

1 1
0 1

)
and S =

(
0 −1
1 0

)
. Then

the matrix
A = Tn1STn2S . . . T nmS

is hyperbolic with a positive trace, reduced, and (A) = (n1, . . . , nm).

Proof. It can be easily proved by induction on m using Lemma 2.3 that trA > 2. A
simple calculation shows that the matrix A = Tn1STn2S . . . T nmS fixes the point w =
(n1, . . . , nm). We need to show that w is attracting. Suppose it is not. Then w is the
attracting fixed point of A−1, which is also hyperbolic with a positive trace. Applying
Proposition 2.6 to A−1 we obtain that A = A−1, which contradicts the hyperbolicity of
A. �
3. Geometric and arithmetic codes of closed geodesics on the modular sur-
face. Let us recall that a matrix A is called totally F–reduced if all matrices in the
A–cycle are F–reduced.
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Theorem 1. The following statements are equivalent:
(1) A matrix A is totally F–reduced.
(2) The arithmetic and geometric codes of A coincide.
(3) All segments comprising the closed geodesic in F corresponding to the conjugacy

class of A are clockwise oriented.

Proof. (1) ⇒ (2) Suppose A is totally F–reduced. Then the axes of all matrices in A–
cycle must enter F through the side a2, and since they are clockwise oriented, they must
leave F through the side v2. Let the “–” continued fraction expansion of the attracting
point of A, w, be (n1, . . . , nm). Then the axes of T−1AT will enter F through v1 and exit
F through v2. Suppose the axes of T−iAT i have the same property for all 1 ≤ i < k,
and the axis of T−kATk enters F through v1 and leaves F either through a1 or a2. We
want to show that k = n1. If k < n1 then the axis of T−n1ATn1 does not intersect F ,
which, in its turn contradicts the fact that S−1T−n1ATn1S is F–reduced. On the other
hand, the axis of T−n1+1ATn1+1 does not intersect F , hence k = n1, the axis of T−n1ATn1

must exit F through a1, and the first number in [A] is n1. (The axis of a reduced matrix

A =
(
a b
c d

)
cannot pass through the point i. For, if it does, plugging z = i into its

equation
c|z|2 + (d− a)x− b = 0

we obtain c = b, which by Lemma 2.3 contradicts to the fact that A is reduced. The
argument is still valid if the axis of A passes through the vertex ρ of F . In this case
the axis of T−n1ATn1 passes through the vertex ρ − 1. We shall see later (see Corollary
3.3) that there are only three primitive F–reduced matrices whose axes pass through the
vertex ρ.) Continuing this process and counting the number of T ’s between the S’s we
obtain the geometric code of A in the form [n1, n2, . . . , nm] i.e. it is equal to its arithmetic
code.

-1 0 1

F

F     

v1

v2

1

a a2

TS(   )

1/2-1/2

v2

1 ρρ-1
•

• •
i •

•

Figure 4
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Notice that the intersection of the axes of the matrices in A–cycle with F constitute
only a part of the closed geodesic in F representing the conjugacy class of A, its “reduced”
part; the remaining pieces represent the axis of the shifts of the reduced geodesics. We
have seen that all geodesic segments obtained in the process turned out to be clockwise
oriented. Thus (1)⇒ (3).

(2) ⇒ (1) Now suppose that A is not totally F–reduced. Then at least one matrix
in A–cycle is not F–reduced. We assume that A itself is reduced but not F–reduced.
Then it is F1–reduced, where F1 = TS(F ), and its axis must enter F1 through the side
TS(v2) (see Fig. 4). Hence the axis of its conjugate T−1S−1T−1ATST intersects F in the
counter–clockwise direction and exits the side v1 of F . This means that the geometric
code of A contains at least one T−1 or, in other words, at least one number in it is
negative, and hence it cannot coincide with any arithmetic code.

(3) ⇒ (1) If A is not totally F–reduced, by the previous argument, one of the seg-
ments comprising the closed geodesic associated to the conjugacy class of A is counter–
clockwisely oriented, a contradiction. �

The following theorem identifies all totally F–reduced matrices in terms of their arith-
metic code.

Theorem 2. Let (A) = (n1, . . . , nm). A is totally F–reduced if and only if 1
ni

+ 1
ni+1
≤ 1

2
for all i (mod m), i.e the arithmetic code (A) does not contain 2 and the following pairs:
{3, 3}, {3, 4}, {4, 3}, {3, 5}, and {5, 3}.
Proof. Let (A) = (n1, . . . , nm). First we prove that if (A) contains a forbidden combina-
tion, then A is not totally F–reduced. Suppose (A) contains a pair {k, n} such that

(3.1)
1
k

+
1
n
>

1
2
.

Passing, if necessary, to a matrix in A–cycle, we may assume that n1 = n, nm = k. We

shall show that such an A is not F–reduced. If A =
(
a b
c d

)
, its axis has the equation

c|z|2 + (d− a)x− b = 0.

Since both codes are invariant under SL(2,Z)–conjugacy, we may assume that A is re-
duced. Then its axis intersects the circle |z| = 1. It intersects F or not depending whether
for the intersection point z = x + iy, x ≤ 1

2 or x > 1
2 . Hence we obtain the following

condition for a reduced matrix A not to be F–reduced: a−d
c−b − 2 < 0.

According to Corollary 2.9, A = AnAn2 . . .Ak, where Ai = T iS =
(
i −1
1 0

)
. We

write B = An2 . . .Anm−1 =
(
a′ b′

c′ d′

)
, where B is either reduced (by Corollary 2.9) or is

the identity matrix 12. Then

A =
(
n −1
1 0

)(
a′ b′

c′ d′

)(
k −1
1 0

)
=
(
a′nk − c′k + b′n− d′ −a′n+ c′

a′k + b′ −a′
)
.
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Then

a− d
c− b − 2 =

a′nk − c′k + b′n− d′ + a′

a′k + b′ + a′n− c′ − 2

=
(nk − 2(n+ k) + 1)a′ − (k − 3)c′ + (n− 2)b′ − (d′ + c′)

a′k + b′ + a′n− c′ .(3.2)

By Corollary 2.9 a + d > 0, by Lemma 2.3 we have c − b > 0, i.e. the denominator of
(3.2) is positive. If B is reduced, by Corollary 2.9 it has positive trace, hence by Lemma
2.3 c′ > 0, b′ < 0, c′ + d′ > 0; if B = 12 c

′ = b′ = 0, d′ = 1. In any case, since by (3.1)

(3.3) nk − 2(n+ k) + 1 ≤ 0,

the numerator of (3.2) is negative, hence A is not F–reduced. The solutions of (3.1) in
integers ≥ 2 give us exactly the forbidden pairs {2, q}, {p, 2}, {3, 3}, {3, 4}, {4, 3}, {3, 5},
and {5, 3}.

Now we show that any code not containing forbidden pairs gives a totally F–reduced
matrix. First we need to prove the ”monotonicity” of the property to be totally F–
reduced.

Lemma 3.1. If A = An1 . . .Ani . . .Anm is totally F–reduced and n > ni, then A(n) =
An1 . . .An . . .Anm is also totally F–reduced.

Proof. We write

A(n) =
(
a1 b1
c1 d1

)(
n −1
1 0

)(
a2 b2
c2 d2

)
=
(
a1a2n+ b1a2 − a1c2 a1b2n+ b1b2 − a1d2
c1a2n+ d1a2 − c1c2 c1b2n+ d1b2 − c1d2

)
,

where
(
a1 b1
c1 d1

)
or
(
a2 b2
c2 d2

)
can be equal to the identity matrix 12. Let

f(n) =
a1a2n+ b1a2 − a1c2 − c1b2n− d1b2 + c1d2

c1a2n+ d1a2 − c1c2 − a1b2n− b1b2 + a1d2
− 2.

Since A = A(ni) is totally F–reduced, f(ni) ≥ 0. The lemma will follow if we prove
that f ′(n) > 0. For, notice that since f(n) is a fractional linear transformation up to an
additive constant, f ′(n) > 0 if and only if the determinant of the corresponding matrix
is positive:

(a1a2−c1b2)(d1a2−c1c2−b1b2+a1d2)−(b1a2−a1c2−d1b2+c1d2)(c1a2−a1b2) = a2
1−c2

1+a2
2−b2

2.

If
(
a1 b1
c1 d1

)
6= 12 it is reduced, and by Lemma 2.7 a1

c1
> n1 − 1 ≥ 3 − 1 = 2. Hence

a2
1 > 4c2

1 > c2
1, i.e a2

1 − c2
1 > 0. If

(
a1 b1
c1 d1

)
= 12, the above equality also holds. Then

a2
1 − c2

1 + a2
2 − b2

2 > a2
2 − b2

2 > 0.
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The last inequality follows from Lemma 2.3: if
(
a2 b2
c2 d2

)
is reduced: a2+b2 > c2 +d2 > 0

and is trivial if
(
a2 b2
c2 d2

)
= 12. �

To finish the proof of Theorem 2 we consider the following three matrices: A4 =(
4 −1
1 0

)
, A3A6 =

(
17 −3
6 −1

)
, and A6A3 =

(
17 −6
3 −1

)
. All these matrices are reduced

with arithmetic codes (4), (3, 6), and (6, 3), respectively. The attracting fixed points
of the respective transformations are w4 = 2 +

√
3 ≈ 3.7321, w36 = 3+

√
7

2 ≈ 2.8229,
and w63 = 3 +

√
7 ≈ 5.6458 Their repelling fixed points are u4 = 2 −

√
3 ≈ 0.2679,

u36 = 3−
√

7
2 ≈ 0.1771, and u63 = 3−

√
7 ≈ 0.3542. Their axes pass through the vertex of

F , ρ = 1
2 +

√
3

2 i (see Fig. 5), and hence all three matrices are totally F–reduced. They
play a special role in the proof.

ww w w634363

u
uu

u
3

63
36

4

ρ•

Figure 5

Let us denote the set of all arithmetic codes not containing forbidden pairs by A.
Those are exactly the codes satisfying the inequality

1
ni

+
1
ni+1

≤ 1
2

for all i (mod m) by A. Let (n1, . . . , nm) ∈ A. If ni > 6 is adjacent to a 3, we can
decrease it by 1 and still obtain a code in A. Similarly, by decreasing an ni ≥ 5 which is
not adjacent to a 3 by 1 we also obtain a code in A. Clearly, starting with a particular
code, we can successfully perform this procedure at most a finite number of times until
we obtain a code for which it cannot be performed anymore. We call such codes corner
codes of A. Notice that the above procedure does not change the number and positions
of 3’s in the code. Conversely, each code in A can be obtain form a corner code by a
finite number of reverse procedures. For example, every code in A not containing a 3
can be thus obtained from the code (4). If we show that all corner codes in A are totally
reduced, the Theorem will follow from Lemma 3.1.
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Let (A) be a corner code different from (4), (3, 6) and (6, 3). Then (A) contains at least
one 3 and, up to a cyclic permutation, can be represented as a series of several blocks of
the form {6, 3, 6, . . . , 3, 6, 4, . . . , 4}. Notice that some of the blocks may not contain 4’s
at all, but they still begin and end with 6, and if they are next to each other, then we
will have a pair {6, 6} in the code. In the following lemma we collect all necessary simple
facts that we are going to use in the rest of the proof.

Lemma 3.2.

(i) For x > 1 and m ≥ 3, Am(x) > 1.
(ii) For x > 1, A6A6(x) > A6A3A6(x).

(iii) For x > 1 and n > 0, An
4 (x) > A3(x).

(iv) For x > 1 and n > 0, (A6A3)n(x) > A4(x).

Proof. (i) and (ii) are obtained by a simple calculation; (iii) follows from A4(x) > A3(x),
the fact that w4 = 2 +

√
3 > A3(x) and Corollary 2.4. Similarly, (iv) follows from

A6A3(x) > A4(x), the fact that w63 = 3 +
√

7 > A4(x) and Corollary 2.4. �

In order to prove that A is totally F–reduced, we have to consider six essential cases:

(1) A = A6A3A6 . . .A
n1
4 . . . . . .An2

4 . . .A6A3A6A
nm
4 , where ni ≥ 0 and nm > 0. In this

case we show that wA > w63 and uA < u63 where w and u denote attractive
and repelling fixed points of the corresponding transformations. By Lemma 2.4,
the Möbius transformation corresponding to any reduced matrix represents an
increasing function for real x > 1. Using Lemma 3.2 (i)–(iii) we may substitute
A3 for each Ani

4 with ni > 0 and insert a A3 between any two neighboring A6’s to
obtain for some integer N > 0

wA = A6A3A6 . . .A
n1
4 . . .An2

4 . . .A6A3A6A
nm
4 wA > (A6A3)NwA.

If wA ≤ w63, by Corollary 2.4, we would have (A6A3)NwA ≥ wA, a contradic-
tion, hence wA > w63. By property (1.4) 1

uA
has the period reversed to that of

wA. Hence

1
uA

= Anm
4 A6A3A6 . . .A

n1
4 . . .A6A3A6

1
uA

> (A3A6)N
1
uA
,

and it follows that 1
uA
> w36 = 1

u63
. Thus we obtain the second inequality uA < u63.

The axis of A encloses the axis of A6A3, and hence intersects F properly.
(2) A = A6A3A6 . . .A

n1
4 . . .A6A3. The same argument as above shows that in this

case also wA > w63 and uA < u63. As in case (1), the axis of A encloses the axis
of A6A3, and hence intersects F properly.

(3) A = A6A3A6 . . .A
n1
4 . . . . . .An2

4 . . .A6A3A6. The same argument as in (1) shows
that for some M > 0

wA = A6A3A6 . . .A
n1
4 . . .An2

4 . . .A6A3A6wA ≥ (A6A3)MA6wA.
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Using Lemma 3.2 (iv) and (iii) we obtain wA > A4A6wA > A3A6wA, hence wA >
w36. Then A6wA = 6− 1

wA
> 6− 1

w36
= w63, and therefore wA > w63. For 1

uA
, the

inequality 1
uA
> w36 already gives uA < u63. As in case (1), the axis of A encloses

the axis of A6A3, and hence intersects F properly.
(4) A = A3A6A3A6 . . .A

n1
4 . . .A6A3A6. The same argument as in case (1) shows that

in this case wA > w36 and uA < u36. Hence the axis of A encloses the axis of
A3A6 and hence intersects F properly.

(5) A = An1
4 A6A3A6A3A6 . . .A6A3A6A

nm
4 , where n1 > 0, nm > 0. By Lemma 3.2

(ii)–(iv) we obtain

wA = An1
4 A6A3A6A3A6 . . .A6A3A6A

nm
4 wA > An1

4 (A6A3)KwA > An1+1
4 wA.

Therefore wA > w4 and similarly, 1
uA
> w4 which implies uA < 1

w4
= u4. In this

case the axis of A encloses the axis of A4 , and hence intersects F properly.
(6) A = An1

4 A6A3A6A3A6 . . .A6A3A6, where n1 > 0. Lemma 3.2 (iii) and the same
argument as in case (4) shows that wA > w36 and uA < u36, hence the axis of A
encloses the axis of A3A6 and hence intersects F properly.

�
Corollary 3.3. The only primitive totally F–reduced matrices whose axes pass through
the vertex ρ of the fundamental region F are A4, A3A6, and A6A3.

Proof. We have seen in the proof of Theorem 2, that the axis of any totally F–reduced
matrix with a corner code different from a power of A4, A3A6, or A6A3 encloses the axis
of one of the three transformations A4, A3A6, or A6A3, and hence intersects F properly
and does not pass through the vertex ρ. By Lemma 3.1 the same is true for any totally
F–reduced matrix which does not have a corner code. �
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