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1. Introduction

The two main results of this paper are united by the same method of proof. Our
first result is concerned with cusp forms on Fuchsian groups. Let I' be a cocompact
Fuchsian group acting on the upper half-plane J#, i.e. a discrete subgroup of SL(2,[R)
with I'\# compact. We study the sequence of finite dimensional vector spaces {S,,(I'),
k=2,3, ...} of holomorphic cusp forms of weight 2k on I'. For each conjugacy class of
hyperbolic (i.e. diagonalizable over [R) elements in I', denoted by [y], v € I', there exists
a special cusp form 6, [, € S, (I'). Since conjugacy classes of primitive hyperbolic
elements in I' are in one-to-one correspondence with oriented (primitive) closed
geodesics in I'\#, we call these cusp forms relative Poincaré series associated to closed
geodesics. They have been described by Petersson and studied by complex analysts as
well as by number theorists. For bibliographical remarks and properties of relative
Poincaré series see [5]. In [5] we proved that the set of all relative Poincaré series span
S,.(I') (Theorem 1). Goldman and Millson [3] specified a priori a finite set of relative
Poincaré series which span S,,(I'). In this paper we use completely different methods to
obtain a similar result, but with a better estimate on the number of relative Poincaré
series needed.

Theorem 1. For any a>0 there exists a constant Cy(o) >0 independent on k such
that the set {O, (,, length [7] < Co(2)k® %} spans S, (I).

Remark. The Selberg trace formula [4] implies that the number of closed
geodesics of length < T grows with T as exp(T—InT). Thus our estimate for the
number of relative Poincaré series which span S,,(I') is exp(Ck®"*—InCk8®"?),
compared to exp((2** '—1)—In(2?*7'—1)) in [3]. Obviously both estimates greatly
exceed the dimension of S,,(I) which grows linearly with k. However, obtaining a
considerably better estimate seems to be beyond the reach of existing methods.

Our second result is a “finite version” of the following theorem which is a trivial
consequence of Theorem 3. 6 by Guillemin and Kazhdan [2]:
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Theorem 2. If a smooth function f on a compact negatively curved surface has zero
integrals over all closed geodesics, then f=0.

Let M be a compact negatively curved surface, and S M be its unit tangent bundle.
We consider the space L?(SM) equipped with the scalar product <,», and we denote the
corresponding norm in I*(SM) by |- |. In this paper C with various subscripts denotes
positive constants which may depend on the surface M. The dependence on a
parameter, if any, is specified. We now can state our result.

Theorem 3. Given ¢>0, for any a>0, there exists a constant C,(«) such that if a
function f e C*(M) with ||f|lc2=1 has zero integrals over all closed geodesics of length
SCi(0)e 7% then | f| e

2. Geometric preliminaries

Let M be a compact negatively curved surface, SM be its unit tangent bundle, and
0 y
30 be the infinitesimal generator of the action of SO(2) on SM. [*(SM) can be

decomposed as a direct sum

@.1) IX(SM)= @ H,,

0
where H, is the eigenspace of the differential operator @"Z_'/_lﬁ with the

eigenvalue m:
(2.2 H,={Fe*(SM)| 2,F=mF}.

Let {'} be the geodesic flow on SM, and & be the operator of differentiation along the
orbits of {i'}. It is defined on a dense set of functions differentiable along the orbits of
{p'}, and is skew-self-adjoint: 2*=—92, since the geodesic flow {y'} preserves the
volume form on SM. We will need the following properties of 2 (cf. e.g. [2]):

(2.3) D=9"+%", where 9*:H,—H,,,,2 :H,— H,_,,
(2. 4) (@) =—2, @ )*=—-9",

—K : 2
(2.9) [2%, 27] iy - %,, where K is the scalar curvature function on M.

Let M =TI\ be as in § 1. It is of constant negative curvature K = — 1, and all of
the above applies. Following [5] we parametrize the unit tangent bundle to the upper
half-plane, S#, by local coordinates (z, (), where ze #,{e C, |{|=Imz. For any
f(z) € S,,(I) the function f(z)¢* is well-defined on SM. The scalar product on L*(SM)
is given by the formula

(F,Gy= [ F-Gdvdo,

SM
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dxdy 1

where dV =———, 0=2—— Arg{, and dVd0 is the SL(2, R)-invariant volume on SM.
y T

Obviously, f(z){* e L*(SM). The subspaces H,, in this case are defined as follows:
H,={G(z,{)e L*(SM)| G(z, {)=g(z)(*}; notice that g(z) is not supposed to be
holomorphic. Let 1,: S,,(I') — L?*(SM) be given by the formula 1, f(z)= f(z){*. Then
u S, () ={f(2){, € Hy, f(z) holomorphic}; it is a finite dimensional subspace of H,.
The explicit formula for £~ which can be found in [5], and holomorphy of cusp forms
imply the following property:

2. 6) D™ (1,85, (I1) =0

By [5], Proposition 3, Theorem 1 follows immediately from the following statement.

Theorem 4. For any o >0 there exists a constant C(2) >0 independent on k such
that if f(z)€8,(I') and | f(z){*dt=0 for all closed geodesics [y] of length

[¥1
< Cola)kB*, then f(z)=0.

The first ingredient that goes into the proofs of Theorems 3 and 4 is the following
result in dynamical systems.

Theorem 5 (Finite Livshitz Theorem). Let M be a compact negatively curved
surface, X =SM, {y'} be the geodesic flow on X, and T >0. Then there is 1o <1, and for

any 4, 0<i<ly a constant C(4) such that if fe C*(X), |fllcz=1, and [ fdt=0 for
[o]
all periodic orbits [0] of {y'} of length <T, then there exist F, he C'**(X) such that
A

f=DF +hwith |h|:<CAT 3.

Remark 1. The constant A, is computable in terms of characteristics of the
geodesic flow {y'} [6], and 1,=1 in the case of constant negative curvature —1
(Theorem 4).

Remark 2. This theorem was proved in [6] for contact Anosov flows, which
include geodesic flows on compact negatively curved surfaces as a particular case.

3. Regularity of cusp forms

In this section we shall prove the following general result about cusp forms.

Let a=(%, %5, ..., 9)y) be a formal vector of length |x|>0 with 2,=2%, 2~
or 9. A partial derivative of order o we define as the differential operator
D =D D, Dy For Ja|=0 we let 2°f=f. Let H"(SM) be a subspace of L?>(SM)
consisting of functions whose partial derivatives of order o belong to L?(SM) for all «
with |¢| <n. The space H"(SM) is a Sobolev-like space for non-commuting differential
operators 2%, 2~ and %,. It can be equipped with the norm

I flm= % 1211

O=<|a|=n
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Similarly, we define the space C™(SM) of functions having continuous partial derivatives
of order « for all & with |a| <m with the norm

Ifllem=2 supl|2®f|.

0<lalzm

Theorem 6 (Regularity Theorem). Let m be a positive integer. Then there exists a
constant C >0 such that for any F € 1,S,,(I'), |F|lcn < Ck™ 2| F|.

Proof. We shall prove by induction that for n=1 there exists a constant C,(n)>0
such that for any F € 1, S,,(I), | F|lg= = C;(n)k" || F||. For n=1 we have

IFllgs = IFll + 12 Fll +12* Fll +112” F|.

According to (2. 4—(2. 6) we have |Z,F| =k|F|, |«  F| =0,
1 k
|27 F|* =<2 F, 2" F)=—(F, 2" 9" F) =5 (F, 9,F) - (F, 2" 9" F) =2 | F|*.

k
Hence |2* F| = lg |Fi, and the claim follows. Suppose that for n —1 our hypothesis
is true. First we compute |27"F| = |2* 2" ---2* F| (all 2*s) using (2. 4)—(2. 6).

|9*"F|*=(D* 9" --2*F, 9* D" - 9* F>=—(D@*~-2*F, 9~ D" --D*F>

1
(@ D E, 5 B D B B — (R G F DG @ )

1 1
=(F* D F, 5 DD D FI LD D F, 5 DD, D" D o
1 1
+(D* D F, 5 9" DT GFy = n2k+n—1) | 2" VF|?

S Cy(mk - K27 V|F|2=Cy(mk* 1| F|2,

P
and therefore |27"| < C,(nk 2| F|. Now let |¢|=n and 2*=2, D, --- D,. If for some
i=1,...,n 9,=%,, we use (2. 2) and (2. 4) to conclude that :

1
12*Fll =5 (k+n—1) Ciln=Dk" M |F| = C (mk" | F].

Now suppose that for some i=1,...,n 4,=2". lf i=n, by (2.6) 2°F=0. If i<n, we
may assume that %;= %" for j>i. Then

1
12*Fll£5 (r—1) (k+n—-2) Cy(n—Dk" " |F| = C, (mk"|[F]|.
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Let us cover SM by a finite number of coordinate charts. Inside each chart the
operators ¥*, 2~ and %, are expressed as linear combinations of partial derivatives
relative to this chart with smooth coefficients. Using the chain rule one sees that our C™
and H" norms are locally equivalent to the standard C™ and Sobolev norms defined
relative to each coordinate system. Therefore we can use the Sobolev embedding

3 : :
theorem [7] to conclude that for n >§+m H" = €™ dn. particular,: H" 2<.C", and

therefore for some constant C;>0, |[F || cm < C; | F| gm+2, and the theorem follows. O

4. The proof of Theorem 4
Suppose f(z)40. We may assume then that || f(z){*| .= 1. Applying Theorem 5
to the function f(z){*€,S,,(I'), we obtain for every 4, 0<A<1, two functions
F, h e C***(SM) which satisfy the equation

4.1) DF=f(z)*+h.

1
Lemma 1. Let f(2){* € 1, S,,(I') and (4. 1) holds. Then || f(z)C*| <6 (vol M)? ||| c:.

Proof. 'We decompose the functions F and h according to (2. 1): F(z, {)= Y F,,
h(z,{)= Y h,, F,, h,eH,. Then the equation (4.1) is equivalent to the following

system

“.2) @*Fk+1+@+Fk—1=f(z)Ck+hka

' D Fy+ D F_;=h; forall j+k.
We have

127 Fuill?=12* F;_ — byl 2.

By [2], Lemma 3. 4, we have

F41
197 Fjiq | =——

o~ el
L L Fj+1||2=|I92+Fj-1—h,-II2+THFJ-HII"-

Let j=k+1. Then j+1>0, and therefore

|12* Fiisl* 2 1127 F-y — By %,
12™ Fiuill 2127 F—y — b 2 127 F—y |l — B,

and

n—1
19" Fii2a-al 21D Foyll = % 02l
i=0
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Since |2" Fj4 5,1l — 0 as n — oo, we have for j—1=k+1>0

(4.3) 127 Ferl 127 Feasl £ 3 Nl

m+0

We shall prove that

(4.4) IIhm | S (vol M)? .

lf

We recall that
1Al g2 = o]l + |1 @bl + |12 h| + 2 h|.

1
Obviously, ||kl g £ (vol M)? ||k c:. By the Cauchy-Schwartz inequality

bt/ s 405 }
n o0

3 ||hm1|§( Y m2|hm”2> (Z 7) é—(z m2||hm||2) :
m*0 m*0 m+o M ]/5 “w

=(f i)

(4. 4) follows. The next inequality follows now from (4. 3) and (4. 4).

and since

(S

0

Y. mh,,

— 0

1Rz 2 [ Zhll =

(4. 5) |2 Frall S 19" Fyy | S—= (vol M)? IRl

lf

Let us denote 2~ F, ,, + h, =g, and rewrite the first equation of (4. 2) as follows:
(4. 6) f@**=92"F _,+g.

We also have
4.7 bl = 181 = 1Al g = (V01M) IRl c:-

Then using (4. 5) and (4. 7) we obtain

_ T 1
lgell = |2 Fk+1l|+IIhkllé(—H)(volM)2 Ihllcs-

/2
Taking &~ from both sides of (4. 6) and using that by (2. 6) 2~ f(z)(* =0 we obtain
(4 8) 0:@_@+Fk71+@’gk

The next equality is obtained by taking the scalar product of both sides of (4. 8) with
F,_, and using (2. 4).

0=CF—1,9 @' Fo )+ F-1, D 8>=—AD Foey, D' F, )LD  F_1, g1 -
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Therefore
|2+ For 2 =1€D" B Bl S 12 By || - [ 2]l

If | 2% F,_,| #+0 we divide both sides by |2" F,_,| and obtain the estimate

A 1
4.9) 127 F—1ll < ll gl é(—+ 1) (vol M)* || 1,

/3

which is also true for |2* F,_,||=0. The desired inequality follows now from (4. 5),
(4.7) and (4. 9):

1

I f@ I S DY Foill + 127 Feaall + I | £ 6(vol M) Al . O

An application of Theorem 6 to the function f(z){* for m=2 gives us the
following inequality

C
(4. 10 @2 1 @ e =5

By the Finite Livshitz Theorem, for any T >0, the cohomological equation can be
__A
solved in such a way that for any 4, 0<i<l, |h|cSC@A)T *°*, and hence for

C0=6(volM)%
=
(4.11) If@I=Co-C) 7.

3-2

TASET
Co C(i)) , and Cy(®) > C’ (). Then for

Ch A=
0o0se C

12
dlet C'(0)=
o +a and let C'(«) (

Co(0)k®***=T > C'(@)k®+*

we have
B T
Co CIAIT = <@
The last inequality leads to a contradiction between (4. 10) and (4. 11). O

Remark. Let A be the Laplace (Casimir) operator for S# in L[*(SM) [1].
A operates as a scalar on each subspace 1, S,,(I') < Hy, i.e. for f €1, 8,,(I')

k(k—2)

P

Then || fllc:ZC' | fl g2 2 CK*|| [, i.e.

(4.12) (M =eres
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Therefore, an estimate

12

instead of (4. 10) would have given us the estimate T < C,(x)k*** instead of C,(o)k®**
and a better estimate cannot be obtained by our methods.

b

5. The proof of Theorem 3.

We notice first that L>(M)=H,. Applying Theorem 5 to the function f e H, we
obtain the following system of equations:

D Fi+2"F_  =f+h,,

(5. 1)
@ij+1+9+F;‘—1 .

forall j=0,

j

where F, he C'**(SM), F= Y F,, h(z,{)= Y h,,, where F,, h,, € H,,.

1
Lemma 2. Let f € H, and (5. 1) holds. Then | f|| < 5(vol M)? || k|| c.

Proof. Using the same argument as in Lemma 1 we obtain that

(5.2) |27 Fy| S 12" Fy || S—= (vol M)* 1A ¢

lf

and

(5.3) ol < (vol M) [l

In order to estimate |2 F_,|| we need an argument different from holomorphy used in

K K
the proof of Lemma 1. Let q, =min(—7), a, =max(—2). By [2], Lemma 3. 4, for

j+1<0 we have

Jj+1 _
1Z* Fjia|* = a0 5 il * + 127 > =127 Foy—hyl* +a P |l 1l

Then
127 FiI? 112 Fioy — b1 S 12 Fi-y | + 1Ry )12,
and

197 Fii | S 12T Fmguall + X o4l

i=0

92 Journal fiir Mathematik. Band 395



194 Katok, Finite spanning sets for cusp forms

Since |2 F;_5,-1| — 0 as n — oo, we have for j+1=—-1<0

(5.4) 12 F_4ll< Y bl =

m4=0 ]/_

(volM Al ct.

Thus
18
IfIS2F F_ |+ 127 F_i|| + lholl = 5(vol M)* |kl c:. O

By the Finite Livshitz Theorem, for any T >0, the cohomological equation can be

solved in such a way that for any 4, 0<A<1 |k £C(A)T 3%, and hence

1 2 A
(5.5) IfI£5(vol M)* - C(AT *~*.
3 2+ta
Choose /1=3 ” and let Ci(x)=5%*"*(volM) > C(1)*>*? and C,(x)> C{(x). Then for
1 T
T=C(0)e”2"* we have | f||£5(volM)* C(HT *** <s. O
Corollary. Let C}(M)={fe C*(M)|L||f|>|fl¢c}. For any «a>0 there exists

T(«, L) such that if fe CZ(M) and | fdt=0 for all [y] of length < T(x, L), then f=0.
[1

1
Proof. Suppose f+0. We may assume then that |f|..=1. Take e=1>

T(x, L)=C,(x)L>**. Applying Theorem 3 we obtain | f| <e which contradicts the
inequality || || > e.

6. A concluding remark

Theorem 2 and Theorem 1(i) of [5] could be included as particular cases in the
following conjecture.

Conjecture. Let f e H,, and fe C'(SM). If the function f has zero integrals over
all closed geodesics, then || f|| =0.

The corresponding generalizations of our “finite” results, Theorems 3 and 4, would
be a positive solution to the following

Problem. Given £¢>0, find an effective estimate T(e) such that if a function f € H,,
feC*(SM), and | f|c2=1 has zero integrals over all closed geodesics of length < T (e),
then || || =e.
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