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In this paper we study the space of smooth functions on the unit tangent bundle SM to a
compact negatively curved surface M that are eigenfunctions of the infinitesimal generator of the
action of SO(2) on SM, and that have zero integrals over all periodic orbits of the geodesic flow
on SM. It is proved that the space of such functions is finite dimensional. In the case of constant
negative curvature a complete description of this space is obtained.

1. Notations and Statement of the Main Results

Let M be a compact negatively curved surface, SM its unit tangent bundle, {y/'} the
geodesic flow on SM, C*(SM) the space of infinitely differentiable functions on SM,

and 2 = B the operator of the differentiation in the direction of the geodesic flow {y/'}.

We are going to study the space of functions in C*(SM) that have zero integrals over
all periodic orbits of the geodesic flow {yr'} (also called closed geodesics.) The Livshitz
Theorem asserts that the following two conditions are equivalent:

(i) f e C*(SM) has zero integrals over all closed geodesics,

(ii) the Livshitz cohomological equation

f=9F (1.1)

has a unique (up to an additive constant) solution F € C*(SM).

The functions satisfying (ii) are usually called coboundaries. We shall denote the
space of coboundaries by #*(SM). The difficult part of the proof ((i) = (ii)) consists of
two parts: the existence of a solution of (1.1) which is given by a global construction,
and the regularity of the constructed solution. The first part and the proof that the
solution is C' is due to A. Livshitz [6], and the proof that the solution is C® is due to
Guillemin and Kazhdan [2]. For related more recent regularity results for Anosov
flows see also [3] and [7]. In general, even for a very regular function f it is impossible
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to give a reasonable close expression for the solution F of (1.1). The goal of this paper
is to show that in certain cases such an expression can be obtained through the
interplay between the hyperbolic structure of the geodesic flow and the ellipticity of
certain differential operators involved. I would like to thank Livio Flaminio for fruitful
discussions which helped to clarify the above-mentioned connection.
0 . .

Let 0 be the infinitesimal generator of the action of SO(2) on SM. We consider the

L*(SM) with a scalar product ¢ , », and the orthogonal direct sum decomposition:

L*(SM) = éHm, (1.2)

; : , @1 gt
where H,, is the eigenspace of the differential operator 9, = —,/—18—9 with the

eigenvalue m:

H, = {F € L*(SM)|2,F = mF}.

The differential operator & is densely defined on L*(SM). It is skew-self-adjoint:
9* = — 7 since the geodesic flow {y'} preserves the volume form on SM. The
following properties can be found in [17:

D=9" + 9 where 9" :H,—H,,, and 2~ : H, - H,_, are extensions of
first order elliptic differential operators defined on the dense subspace

Cy=H,nC*(SM)of H,, (1.3)

@MY = -2, (@)= -3, (1.4)
T —-K . .

(27,27 ] = T,@o, where K is the scalar curvature function on M . (1.5)

Let S, = Ker 27|, ,and V,, = Ker 2*|, . The following properties are implied by
the fact that 2* and 2~ are elliptic operators, and can be found in [8]:

S.<Cpr, V,cCy, [8, Theorem 4.8(a)]; (1.6)
dim§,, < o0, dimV,, < w0, [8, Theorem 4.8(b)]. (1.7

For €S, N CY there exists a unique & € C2_, N V,_,* such that 27¢ =, and for
t€ ¥, n CZ there exists a unique £ € C2,, N S,,.,* such that 9~ ¢ = 1 (L denotes the
orthogonal complement with respect to the scalar product on L*(SM)) [8, Theorem
4.11]. (1.8)

Guillemin and Kazhdan obtained the following finiteness result [1, Theorem 3.6]:
Let f be a smooth function on SM of the form [ = Y f,, f; € H, having zero integrals

lil<n

over all closed geodesics. Then there exists a smooth solution of (1.1) of the form
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F= ) F,F, eH,.In particular, if f is a function on the surface M itself, the above

i|<n—1
resul‘tlenables us to conclude that the only solutions of (1.1) are constants, and the
following vanishing theorem holds [5, Theorem 2]: If a smooth function f on a compact
negatively curved surface has zero integrals over all closed geodesics, then f = 0. In
other words, Hy n #*(SM) = {0}. In this paper we generalize this result in the fol-
lowing way: we prove that the space of coboundaries #° = H, n #°(SM) for k > 0
is always finite-dimensional.

Theorem 1.1. Let M be a compact negatively curved surface, k > 2 an integer, and

J € G be a function having zero integrals over all closed geodesics on SM. Then f
[k/2]—1
belongs to a finite-dimensional subspace of C° of dimension Y dim(S,_,_5;).
i=0

Remark. For the case k = 1 see Theorem 6.1.

In the case of constant negative curvature the fact that the operators 2%, 2~ and
9, generate a 3-dimensional Lie algebra enables us to prove the following algebraicity
result that gives a complete description of coboundaries.

Theorem 1.2. Let M be a compact surface of negative curvature K = —1, k> 2 an

integer. A function f € C° has zero integrals over all closed geodesics on SM if and only
[k/21-1 ‘
if it can be represented in the form f = Y (D) 'hy_y_5;, where hy_y_5; € Si_q_y;
i=0
l (k/21-1
In the latter case a solution F of (1.1) can be written explicitly: F= Y F,__,.,
m=0

[k/21-1 )
where F_i 5= Y (27)Y"™gi_yj, and each g,_,_,, € S,_y_,; is a multiple of

j=m

L

This theorem puts very strong restrictions on the functions that can be cobound-
aries, in particular, it includes our earlier vanishing result, Theorem 2(i) of [4]: If a
function f € S, has zero integrals over all closed geodesics, then f = 0. This result was
used in [4] to show that for any Fuchsian group of the first kind T" and k > 2, relative
Poincar¢ series associated to closed geodesics span the space of cusp forms of weight
2k on I'. Incidentally, the proof of this theorem given in [4] for the constant negative
curvature works for the variable curvature as well, and hence we have a class of
functions (S,) that cannot be coboundaries. Certain other classes of funtions that
cannot be or always are coboundaries in the variable curvature case are identified and
dicussed in Sec. 6.

2. The Variable Curvature Case
The following lemma makes (1.7) more precise.
Lemma 2.1
(i) If m > 0, V,, = {0}, i.e., the operator 9" |y _is injective.
(ii) If m <0, §,, = {0}, i.e., the operator 9~ |y _ is injective.
(1) Sy = V, consists of constants, i.e., dim S; = dim V¥, = 1.
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Proof. By (1.6), it suffices to consider f € C;;, and the lemma follows immediately
from Lemma 3.4 by Guillemin and Kazhdan [1]. For the completeness sake we repeat
their argument. By (1.5)

K K
DD =9 D — 596_{ =9 g — Emf,
and hence

@ ffy =@ L+ m -5 1),
and
19712 + agmll {17 < |91 < 197712 + aml I, @1

K K
where a, = min(—z) and a, = max(z), a,>a,>0. f m>0, |2*f]| =0

implies ||f|| =0, and (i) follows. If m <0, |27 f|| =0 implies ||f]| =0, and (ii)
follows. Let m = 0, and 2*f = 0. Then (2.1) implies 2 f = 0, hence 2f = 0, and by
the ergodicity of the geodesic flow f = const. The case 2™ f = 0 follows similarly.

O

The next observation plays a very important role in what follows.
Lemma 2.2. For any fe CL(SM)nH,, 2*f L S.,,.
Proof. For any h, ., € S;+; we have by (1.4) (27 f, hy1> = —{f, D hy1)> =0.

O

Lemma 23. Let k > 0 be an integer. Then any f, € C° can be written uniquely
k—1

in the form f, = Y (2% Yh—; + (2" Vo, where h_, € S;_;, ho € C§ n Vo', and any
i=0

k—1

for € C% can be written uniquely in the form f, =Y (27 Vh; + (27 )ho, where

hoisi € Vogais ho € C3 0 8ot

Proof. First we notice that any f, € C° can be written uniquely in the form
f, = h, + 7, where h, € S, and 7 € 5. By (1.6) € §,* n C{*, and hence by (1.8) f; can
be written uniquely in the form f, = b, + 97 where he §,, £ € G2 ;. Now we give a
proof by induction on k. For k = 1 the statement is true: f; = h, + 2*h, with h, € S,
hy € C? N V,*. Suppose it is true for k = n. Then f,; = h,yy + 27f,, where h,,, €
S,+1, f, € C, and hence by the induction hypothesis and by the linearity of 2% we
have

n—1 n
f;l+1 = hn+1 + ‘@+ (;) (‘@+)ihn_i + (‘@+)nh0) = hn+1 F ; (9+)ihn—i =+ (@+)n+1h0 .
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n—1

To prove the uniqueness we suppose that 0 = h, + Y (2*)'h,_; + (2*)"h, with hy €
i=

CEnVyt, heS,0<i<n,ie, hy=2"(, where { = — Y (2*)h,_;. By Lemma 2.2
i=1
h, L S,, which implies h, = 0, and hence, by the injectivity of 2" (Lemma 2.1(i)), { = 0,
and the assertion follows from the uniqueness for k = n. The statement for f_, is
proved similarly. |
3. Proof of Theorem 1.1
By the Livshitz Theorem the cohomological equation (1.1) has a smooth solution
o0
F. We decompose the functions F and f accordingto (1.2): F = Z E,, f = f,. Then the
equation (1.1) is equivalent to the following system of equations:
D Foy+ D F = fi

(3.1)
9_E+1 +9+F}_1 =0 fori#k.

By the finiteness result of Guillemin and Kazhdan [1, Theorem 3.6] F, =0 fori > k
and i < —k, and Lemma 2.1 implies that ;=0 for i <0, 2" F, = 9™ F, =0, and
F, = 0fori = k(mod 2),i.e., F, = const.,and (3.1)is equivalent to the following system:

A S

ngk_l + ‘@+Fk—3 == O
(3.2)

D Fuy =0,

where a(k) = 1 or 2 depending on whether k is even or odd. It is easy to see that

k
ak)=k+1-2 [z:l, and the number of equations in (3.2) is equal to [g:l + 1. Itis

convenient to number them from the bottom: (3.2)o, ..., (3.2),;. We prove by induc-
' k
tion on n that for n=0, ..., [5] — 1, F,4y+2. belongs to a subspace of Cyyys s, of

dimension ;} dim(S,4)+2;)- For n = 0 from the equation (3.2), we obtain that F,, €

Sz 1-€., the assertion holds. Suppose it holds for n = j, and consider the equation
(3-2)j41: @™ Fypyr2j+2 = — P Fyay42;- According to (1.8) for each F,4y+2; satisfying to
the equation (3.2);, the equation (3.2);,, has a unique solution orthogonal to S, ;4 2-

It follows from the injectivity of 2* (Lemma 2.1(i)) that the space of all solutions of

J
the equation (3.2);,, has dimension dim(S,u)+2¢+1,) + Y. dim(S,uy+2;), and the asser-
i=0
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k
tion holds for n = j + 1. Applying this result to n = [5] — 1 we conclude that F,_,

[k/2]—1
belongs to a subspace of Ci2; of dimension Y dim(S,_;_,;), and by the injectivity
i=0
of 27, f belongs to a subspace of C;° of the same dimension. O

4. The Constant Curvature Case

In this section we assume that M is a compact surface of constant negative curva-
ture K = —1.

Lemma 4.1. Let n and k be two positive integers. Then

—1
(i) for any ho e C¥, 27 (Z")'ho = (27)'D " ho — n(n4 )(@ﬂ"*lho;
2k —1
(ii) for any h € S,, 2~ (2" \'h, = fn(#——)(@*)"”lhk.
Proof. Since K = —1, the commutation relation (1.5) can be rewritten as
9t9~ — 2~ 9% =19,. Applying it n times we move 9~ to the right to get (i). To
obtain the formula in the part (ii) we also need to use the fact that 2™ h, = 0. O

Lemma 4.2. Let n and k be two positive integers. Then
@) for fe G2, (2 V(2" €S if and only if fi € S;;
(ii) for ho e C2, (27 (2" )'hy = 0 if and only if h, = const.

Proof. Suppose f,€S,, then n applications of Lemma 4.1(ii) imply that
(27 )(21), € S,. Conversely, if (27)(27)f, € S, we decompose f, as follows: f, =
h, + gy, where hy € S;, and g, L S,. Then as we have just seen, (27)"(2*)'h, € S, and
hence (27 )Y(2*)'g, € S,. Applying (1.4) n times we obtain that 0 = {(Z7)(2")"9gx. gr>
= (2" )g,| %, which implies (Z2*)"g, = 0, and by Lemma 2.1(i) g, = 0, hence f; € S,
and (i) follows. Obviously, if h, = const. then (27)(Z")*he = 0. f (Z27Y(2"Y'hy =0
then (27)" "1 (27*)"h, € S,, and hence by part (i) 2" h, € S,. However, by Lemma 2.2
DV hy L S,,30 D" hy = 0, and h, = const. by Lemma 2.1(iii). O

5. Proof of Theorem 1.2

As in Sec. 3, the equation (1.1) is equivalent to the system (3.2), the nth equation
being (3.2), 2™ Fypys2n = — 2" Fygys20-2- We shall prove by induction on n that

It k
2i .
Fa(k)+2n = Z (-@+) l.‘Jaz(k)-u!n—zi with some Gaiy+2n—2i € Su(k)+2n—2if0rn =0,..., |:§j| — L.
i=0

k
Then for each m = [2] —1,..., 0 we shall obtain a required formula for F,_; ,,,. For

n = 0 from the equation (3.2), we have F,, € Sy, so the statement is true. Suppose
the statement is true for n = j:

j .
Fopyr2i= Z(.) (@+)Zlga(k)+2j—2i' (5.1)
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Let us decompose F,q). ;42 according to Lemma 2.3:

a(k)+2j+1

Fuyr2je2 = Z (@+)if;z(k)+2j+2—i + (GTPRTEREL (5.2

i=0

where fo € C3, fuwy+2i+2-i € Suy+2j+2—i for i < a(k) + 2j + 2. First we want to show
that the last term of (5.2) is equal to 0. Using the equation (3.2);41: 27 Fgy+2j+2 =
— 9" Fyy+2; and the induction hypothesis for n = j we conclude that

—ya(k)+2j+2 A —a(k)+2j+1 g+
(2 )a“ ! Fa(k)+2j+2_ —(2 )1“ TG Fu(k)+2j

J ; .
LYy & Z (97}20‘”2'”1(@+)21+lga(k)+2j72i'

=0

Since the maximal power of 2* in the last sum is 2j + 1 and a(k) = 1 or 2, we conclude

using Lemma 4.2(i) that this sum is equal to 0. By the same argument
a(k)+2j+1

(k) y : :
(@ y @42 ¥, (D) fuwrajr2- = 0, and hence (@72 (g AL, — 0,

By Lemma 4.2(ii) we have (2)*®*2+2f — 0. We can rewrite (5.2) now:

a(k)+2j+1

Fa(k)+2j+2 5= 'Zo (9+)iﬁz(k)+2j+z—i— (5-3)

The following expression is obtained by an application of Lemma 4.1(ii).

z(k)wfjﬂ iQa(k) +4j+3—1)

Z FF e~ 54

@_Fa(k)+2j+z =
Using the expression (5.1) we obtain

J "
9+Fa(k)+2j = 'Zb (9+)2l+1gu(k)+lj—2i' (5.5)

Plugging the expressions (5.4) and (5.5) into the equation (3.2);,, and applying the
uniqueness of Lemma 2.3 we conclude that f,,,,;4,-; = 0 for odd i, and hence the
statement is true for n = j + 1. Thus we obtain the required expression for F,_,_,,

k [k/21-1 )
orm=0,..., [2:| — 1. For m = 0 we obtain F,_, = ) (2%)%g,_,_,; with some
=0
Gk—1-2j € Sg—1-2j» and hence
[k/21-1 )
f= ,;] (700 Haly Mps (5.6)

withsome h,_; _,; € §;_;_5;. [tis easy to see now that for any f of the form (5.6) one can
solve the system (3.2) descending from (3.2),; to (3.2), and using Lemma 4.1(ii). The
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solution F will be of the required form, and in the expression for F,_,_,,, each g,_, _,;
is a multiple of hy_; _,;. O

6. Related Results for the Variable Curvature

Now we return to the variable curvature case and discuss some additional results.
Besides the two vanishing results mentioned in Sec. 1 dealing with coboundaries from
H, and S, for k > 2 we have one more.

Theorem 6.1. Let M be a compact negatively curved surface. No function0 # f e Cy
can have zero integrals over all closed geodesics.

Proof. It follows immediately from Lemma 2.1(iii).

The next theorem identifies another class of functions in C° that cannot be
coboundaries.

Theorem 6.2. Let M be a compact negatively curved surface. If k > 2, no f € H, of
the form f = h, + D@ h_, + (DF)h,_, with h;€ S;, h,_, # 0 can have zero integrals
over all closed geodesics.

Proof. Suppose f has zero integrals over all closed geodesics. Then by Livshitz
Theorem the cohomological equation (1.1) has a smooth solution F = ) F,, and it

—a0

is equivalent to the following system of equations:
9+Fk*l — hk + ‘@+hk—l + (@+)2hk*2

D F+DF_3=0
(6.1)

D Fy = 0.
First we observe that by Lemma 2.2 h, =0, and by Lemma 2.1(G) F,_, = h,_, +
9*h,_,. From the second equation of (6.1) we obtain @*F,_;= -2 F,_, =
— D Dth,_, = fg(k — Dby — DD h_, = Ag(k —Dhy_y. I Foy#0 by
Lemma 2.2 2*F,_; L S,_,, in particular, (2" F,_5,h,_,» = 0. Using (1.4) we obtain
0=<D*F_3,h_,> = (k — 2)<—12<hk_2,hk_2>. But

K
ag llh—511* < <_2hk—2’hk—2> < ay | l1?,

K K :
where a, = min(—z) and a, = max(—i), a, = ay > 0 which implies (since
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K ;
h,_, #0) <—2 he_5, hk_2> > 0, a contradiction. Therefore F,_; = 0,hence 2* F,_; =

fg(k — 2)h,_, = 0 which contradicts h,_, # 0. O

If k = 2 we obtain a stronger result.

Theorem 6.3. If f € CZ has zero integrals over all closed geodesics then f = 2" h,
withh, € S,.

Proof. Let us decompose f according to Lemma 2.3: f = h, + 2% h; + (2%)*h,
where h, € S,, h, € S;, and hy € CF. Then the cohomological equation has a solution
F = F, € C{ such that

DYF, =hy + D*hy + (D),
9 F, =0.

From the first equation we conclude that h, = 0, and thus F; = h; + 9" h,. From the
second equation we see that F, € S;, and by uniqueness of Lemma 2.3 we obtain
9+h0=0. Thqu=@+h1. D

The converse to Theorem 6.3 is also true, moreover, it is a particular case of a
“trivial” class of coboundaries: If k > 2, then any function f € H, of the form f =
Dt hy_, with h,_, € S;_, has zero integrals over all closed geodesics.
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