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ABSTRACT. In this article we study geodesics on the modular surface
by means of their arithmetic codes. Closed geodesics for which arith-
metic and geometric codes coincide were identified in [9]. Here they are
described as periodic orbits of a special flow over a topological Markov
chain with countable alphabet, which we call the positive geodesic flow.
We obtain an explicit formula for the ceiling function and two-sided es-
timates for the topological entropy of the positive geodesic flow, which
turns out to be separated from one: the topological entropy of the geo-
desic flow on the modular surface.

2000 MatH. SuBJ. CrLass. 37D40, 37B40, 20H05.

KEY WORDS AND PHRASES. Geodesic flow, modular surface, Fuchsian group,
entropy, topological entropy.

INTRODUCTION

Let H = {z € C: Imz > 0} be the upper half-plane endowed with the hyperbolic
metric. Geodesics on the modular surface M = PSL(2, Z)\'H can be coded in two
different ways. Let

F={zeH:|z| >1, |Rez| <1/2}
be the standard fundamental region for PSL(2, Z) whose sides are identified by the
generators of PSL(2, Z), T(z) = z+ 1 and S(z) = —1/z (see Figure 1). In this
article we will consider only oriented geodesics which do not go to the cusp of M in
either direction (the corresponding geodesics on F' contain no vertical segments),
and often refer to them simply as geodesics. Notice that all closed geodesics belong
to this set, and the lift of this set to SM, the unit tangent bundle of M, is an
invariant set of the geodesic flow on SM. The geometric code with respect to F
can be assigned to any geodesic v on F' and can be described by a double-infinite
sequence of integers as follows. We choose an initial point on the circular part
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FIGURE 1.

a1 U ag of the boundary of F' and move in the direction of the geodesic, counting
the number of times it hits the vertical sides of the boundary of F', so that a positive
integer is assigned to each block of hits of v, and a negative one, to each block of
hits of v1. Moving the initial point in the opposite direction allows us to continue
the sequence backwards. Thus we obtain a double-infinite sequence of integers

h]:['”amhmz,mg,...]

called the geometric code of v. Moving the initial point in either direction until its
return to a; U ay corresponds to a shift of the geometric coding sequence [7].

A geodesic with geometric code [y] can be lifted to the upper half-plane H (by
choosing the initial point appropriately) so that it intersects

TEYF), ..., T™(F), T™S(F), ..., T™ST™S(F), ...

in the positive direction (the sign in the first group of terms is chosen in accordance
with the sign of mq, etc.) and

S(F), STTYF), ..., ST™™(F), ..., ST"™ST~™1(F), ...,

in the negative direction. It follows that if two geodesics on M have the same
geometric code, they can be lifted to geodesics on H which intersect the same
infinite sequence of images of F' in each direction, hence have the same end points
and therefore coincide, i.e., the geometric code classifies geodesics on M. The
geometric code is periodic if and only if the geodesic is closed, i.e., is the axis of a
matrix in SL(2, Z). The coding sequence of a geodesic passing through the vertex p
of F in the clockwise direction is obtained by the convention that it exits F' through
the side vo. This construction is universal for all finitely generated Fuchsian groups
and goes back to Morse [14]; see [9] for details.

In [9] “—” continued fractions were used to produce another code classifying
closed geodesics on the modular surface, precisely, the period (up to a cyclic per-

“ 2

mutation) of the “—” continued fraction expansion of the attracting fixed point
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of the corresponding hyperbolic matrix A € SL(2, Z), which is a quadratic irra-
tionality. We call it the arithmetic code of the conjugacy class of A, or of the
corresponding closed geodesic, and denote it by (A).

A hyperbolic matrix in SL(2, Z) is called reduced if its attracting and repelling
fixed points, denoted by w and u respectively, satisfy w > 1, and 0 < u < 1. The
set of reduced matrices conjugate to A is called the A-cycle.

A hyperbolic matrix A in SL(2, Z) is called totally F-reduced if the axes of all
matrices in the A-cycle intersect F.

Notice that while a geometric code may contain positive or negative numbers,
all numbers in any arithmetic code are > 2. It was proved in [9] that a hyperbolic
matrix A € SL(2, Z) is totally F-reduced if and only if its arithmetic and geometric
codes coincide, which is also equivalent to the fact that all segments comprising
the closed geodesic in F' corresponding to the conjugacy class of A are clockwise
(positively) oriented. We shall call closed geodesics identified in Theorems 1 and 2
of [9] positive closed geodesics. Tt was also shown in [9] that their codes are subject
to restrictions which mysteriously coincide with the Schléfly symbols of regular
tessellations of the sphere, include the five Platonic bodies {3, 3}, {3, 4}, {4, 3},
{3, 5}, and {5, 3}, and two “degenerate” series {2, p} and {p, 2} for p > 2. We
shall refer to these as Platonic restrictions.

A positive closed geodesic with the arithmetic code (nq, ..., n,,) is a union
of m “coils”, each “closely imitating” the closed geodesic corresponding to T7:S
with the code (n;). Lifted to the unit tangent bundle of M, SM, positive closed
geodesics are exactly those which are completely contained in the positive half-space
STM ={(z,¢) € SM: Re( > 0} (here (z, ) are the natural local coordinates on
SM: zeH,(€C, |¢|=Imz).

The paper is organized as follows. In Section 1 we extend the reduction theory
to all oriented geodesics on M (with the trivial exception of geodesics going to
the cusp). This allows us to assign to each geodesic a doubly-infinite sequence
of integers > 2, defined up to a shift and called its arithmetic code, which we
interpret here as a code with respect to a particular cross-section of SM. It is
natural to consider all geodesics on M whose arithmetic codes are subject to the
Platonic restrictions. We show that they are exactly the geodesics comprised of
segments in F' which are positively (clockwise) oriented, and hence we call them
positive geodesics. The set of vectors in SM tangent to positive geodesics is a
noncompact invariant set of the geodesic flow on SM. We call the restriction of
the geodesic flow to this set the positive geodesic flow. Since the geodesic flow
is Anosov, the problem of studying positive geodesics fits in a popular branch of
hyperbolic dynamics and its applications to number theory (see [10], [11]). In
Section 2 we describe a representation of the positive geodesic flow as a special
flow over a countable state topological Markov chain (a subshift of finite type with
countable alphabet). This representation allows us to obtain (in Section 3) two-
sided estimates for the topological entropy of this flow. There are different ways
to extend the notion of topological entropy to dynamical systems with noncompact
phase space (see [3, 4, 16]), which may give different quantities. We adopt the
definition identifying the topological entropy with the supremum of the measure-
theoretic entropies over the set of all flow-invariant Borel probability measures.
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Our estimate shows in particular that the topological entropy of the positive
geodesic flow is strictly less than one. It is worthwhile to compare this quantity
with the topological entropy of the full geodesic flow. It has been known from
the late 60’s [12, 13, 20] that the topological entropy of the geodesic flow on any
compact Riemann surface is equal to one (see also [7], Ch. 20). The arguments,
however, do not carry over directly to the non-compact case. The authors consulted
several leading experts in hyperbolic dynamics and thermodynamic formalism, and
to our mutual amazement we found that no written reference exists for a fact that
the topological entropy of the geodesic flow on the modular surface is equal to
one. In Section 4 we prove this fact for quotients of H by all geometrically finite
Fuchsian groups of the first kind by computing the entropy of the geodesic flow with
respect to the normalized Riemannian volume and showing that it is a measure of
maximal entropy. It follows that the geodesic flow on the modular surface is not
Borel measurable isomorphic to the positive geodesic flow.

Acknowledgments. We would like to thank A.Katok for helpful discussions on
the estimates of the entropy of the full geodesic flow and for drawing our attention
to his papers [5] and [6], R. Spatzier for pointing out the reference [21] to us, and
V. Oseledets for helpful discussions. The first author is grateful to the Shapiro
Fund and to the Center for Dynamical Systems at Penn State for their hospitality
and support during his visit to Penn State in the Fall of 1999 when this work was
initiated. And finally, we would like to thank the referee for the comments which
helped us to clarify the exposition of the paper.

1. ARITHMETIC CODE OF ORIENTED GEODESICS
ON THE MODULAR SURFACE

In this section we explain how to assign the arithmetic code to a geodesic on M.

Definition 1. An oriented geodesic on H is called reduced if its repelling and
attracting fixed points, denoted by u and w, respectively, satisfy 0 < u < 1 and
w > 1.

1.1. Construction of the cross-section. Let P U @ be a subset of the unit
tangent bundle SM, where P consists of all tangent vectors with base points in the
side ag of the boundary of F' (see Figure 1) such that the corresponding geodesics
H go in the positive (clockwise) direction and have both end points positive, and @
consists of all tangent vectors with base points in the vertical side vy of F' pointed
inwards, i.e., in the negative direction.

Proposition 2. PUQ is a cross-section for the geodesic flow on SM.

Proof. If a geodesic on F' goes in the positive direction, after a number of hits of
vy (which do not change the direction of the geodesic) it hits either a; or ag. If
it hits a; and does not change direction after the identification of a; with ay via
z — —1/z, it crosses P on SM. If it hits a; and changes direction or hits as, it
crosses vp in the negative direction and after the identification of v; with vy via
z — z+ 1, enters F through the side v in the negative direction, i.e., it crosses @
on SM. Assume now that a geodesic on F' goes in the negative direction. If it first
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crosses v; we arrive to the case already considered. If it first crosses as and does
not change direction after the identification of ay with aq, it will cross v next. If it
changes direction after hitting a; or as we also arrive to the case which was already
considered. [l

1.2. Description of the arithmetic code. Thus, every geodesic 7, lifted to SM,
can be represented as a doubly-infinite sequence of segments ¢; between successive
returns to the cross-section P U Q.

Each segment o; can be lifted to H to a segment of a reduced geodesic which we
denote ;. Indeed, if o; starts at € P, ~; is the geodesic on ‘H determined by x
and is reduced by the definition of P. If og; starts at x € @Q, ; is the geodesic on
‘H determined by T'S(z) which is also reduced. Thus we obtain a doubly-infinite
sequence of reduced geodesics {~;}$2 _  which represent the same geodesic v on M.
It follows that any reduced geodesic 4" on H that is PSL(2, Z)-equivalent to a lift
of v to H, must coincide with one of the «;’s in this sequence.

For a reduced geodesic 7; from u; to w; we write the “—” continued fraction
expansions
1 1 1
[ U S U
na — 71 n_i— 1

ng — — N_g — —

and assign to it a doubly-infinite sequence
(’yi):("'vnfl’n n-2, -1, N, N1, N2, )a nzZQ

Then ~; intersects the circles |z| = 1 and |z — ny| = 1 in the points z; and 2],
respectively (see Figure 2, where n; = 5). The corresponding segment o; projects

N T5(F)

FIGURE 2.

to M to the geodesic segment [z1, Z2] where zo = ST~ ™ (z]) belongs to the first
quadrant of the circle |z| = 1 and Z5 = (T'S)~1(23). Then ST~"1(v;) is reduced,
represents the next segment 7; 11 and produces the same coding sequence shifted one
symbol to the left. Thus all reduced geodesics ; in the sequence produce the same,
up to a shift, doubly-infinite coding sequence, which we call the arithmetic code
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of v. Conversely, each doubly-infinite sequence of integers > 2 produces a doubly-
infinite sequence of reduced geodesics on H which project to the same geodesic
on M. Thus we have,

Theorem 3. Arithmetic code classifies oriented geodesics on M.

Closed geodesics have periodic arithmetic codes. A geodesic v on H from u to w

which becomes closed on M, has the arithmetic code (y) = (n1, na, ..., N, ) where
the “—” continued fraction expansion of w has the period (n1, ns, ..., n,,) and
the “—” continued fraction expansion of 1/u has the period (N, nm-1, ..., n1).

Thus this theory may be considered to be an extension of the reduction theory for
closed geodesics. The coding sequence for a non-closed geodesic is obtained by the
procedure described earlier in this section, and even for quadratic irrationalities is
more complicated than just taking the purely periodic part of the “—” continued
fraction, as the following example shows.

Example. Let v be a geodesic on H from u = v/5 to w = —v/3. The “~” continued
fraction expansions are

1 _
w = (_17 27 27 3)? - = (17 27 6a 2? 2)

u
The segment v N F lifted to SM represents a segment beginning and ending on @,
hence T'S(y) =+ from T'S(u) = v’ to T'S(w) = w'is reduced. Indeed,

1 S
/
w' = (2, 3), i (6, 2, 2, 2),

and the arithmetic code of 7 is
(..,2,2,2,6,2,2,2,6,2,3,2,3,23,...).

Thus the set of all oriented geodesics on M can be described symbolically as the
set
X =Nl={o=m)2_:n€N,icZ}
of doubly-infinite sequences on the infinite alphabet N' = {n € Z, n > 2} with the
Tykhonov product topology. Each oriented geodesic 7y corresponds to its arithmetic
code (y) € X, and each z € X produces a geodesic on H from w(z) to u(z), where

1
w(z) = (n1, na, ...) and @:(nm n_y,...) (1)
are respective “—” continued fraction expansions, which projects to a geodesic on

M. The left shift o: X — X given by (oz); = n;41 transforms v(x) to ST ™ ().
Periodic sequences, corresponding to closed geodesics, are periodic orbits of ¢ and
are dense in X.

1.3. Calculation of the return time. We define a function f(z) on X to be
the length of the segment between successive returns of the geodesic vy(x) to the
cross-section PUQ of SM, i.e., the time of the first return to PUQ if moving with
the unit speed along the geodesic (). We have found an explicit formula for the
function f(x).
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Theorem 4. Let x € X, v = (..., ng, ny, ng, ...), and w(z) and u(x) be the
end points of the corresponding geodesic y(x). Then f(x) = 2logw(z) + log g(z) —
log g(ox) with

(w(z) — u(z))yw(x)* -1

w(z)?y/1 — u(x)? .
Proof. Using the same notations as in Theorem 3, we denote the intersection points
of y(x) with the circles |z| = 1 and |z—n1| = 1 by 21 and 29, respectively. Projected
to SM, [z1, 2] is exactly a segment between two successive returns to the cross-
section P U @, and the value f(z) is equal to its hyperbolic length (see Figure 2).
The next segment is given by ST™* (v(x)), and we write z; = z; + iy, for j =1, 2,
2] = 2l +iye, wy = w(zx), up = u(x), and wy = ST " wy, ug = ST ™uy. A simple
calculation shows that

g(z) =

Yolwy — 212
lwy — 212y

f(@) = L(z1, 21) = log

The expression under the logarithm can be simplified

yalwy — z1)? _ Yo (w1 — 21)% + y?) _ ya(wi — 2wimy + 2% 4 y7)
lwi = 2Py (w1 —27)? +y3)n ((z2 = ;)2 +v3)w
(w§ — 2wyx1 + Dwiys

(w3 — 2wazs + 1)1y

Thus
wf—2w1$1+1
_ ylw%
f(z) —2logw; = log EEECT——
yzw§
Now we notice that for j =1, 2
Tty VA R [ )
r;=———— and y;= .
uj +wj uj + wy

Thus
’LUJ2 — 2’LUj£Ej +1 _ (wj — uj)q/wjz —1
a2 - )
YWy w?\/l —u]z

and therefore the error term can be written in the form

log g(z) —log g(ox),

where
o) = (w(z) —u@))yw@)® -1
w(z)24/1 — u(x)? 7
and
f(z) = 2logw(z) +log g(x) — log g(ox). (2)
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Corollary 5. The length of a closed geodesic with the arithmetic code (n1, ..., Tun)
18 equal to
m
2 log H Wy,
i=1
where w1y, ..., Wy, are the attractive fized points of all reduced matrices correspond-

ing to this closed geodesic.

2. SPECIAL REPRESENTATION OF THE POSITIVE GEODESIC FLOW
2.1. Characterization of positive geodesics.

Definition 6. We call a geodesic v positive if all segments of the double-infinite
sequence comprising it begin and end in the set P.

Since a positive geodesic avoids the set @), its arithmetic code counts the number
of times it hits the side vo of F' in the positive direction. The following result gives
a characterization of positive geodesics in terms of their arithmetic code and is a
generalization of Theorems 1 and 2 of [9].

Theorem 7. The following statements are equivalent:

(i) ~ is positive;

(i) (v)= (..., n_1, ng, n1, na, ...) is subject to the Platonic restrictions, i. e.,
% + n,1 < % for all i;
i i+1

(iii) the geometric and arithmetic codes of y coincide, i. e., (y) = [v];
(iv) all segments comprising the geodesic vy in F' are positively (clockwise) ori-
ented.

Proof. 1t is clear from the definition and the discussion preceding Theorem 3 that
(i), (ii) and (iv) are equivalent. It remains to prove that (i) and (ii) are equivalent.

(ii) = (i). Assume that (i) holds, but « is not positive. This means that it
crosses (). The geodesic v can be approximated by a sequence of closed geodesics
whose codes are subject to Platonic restrictions. By Theorems 1 and 2 of [9], these
closed geodesics are positive, i.e., avoid ). Thus 7 belongs to the closure of the set
of positive geodesics. But the only geodesics in the closure which are not positive
are those which contain infinite vertical segment. Since such geodesics have been
excluded from coding from the beginning, ~ is positive.

(i) = (ii). Assume that +y is positive. First let us show that () does not contain 2.
Indeed, if n; = 2, then the reduced geodesic 7; associated to () must intersect the
circles |z| =1 and |z — 2| = 1 at the points z; = 21 +4y; and 2] = 2} + iy} with
0 <z <1/2 and 3/2 < ) < 2. Since the geodesic 4" passing through the points
3 +i§ and 3 +i§ also passes through 0 and 2, this is impossible since this would
imply that two different geodesics, v and 7/, have two intersection points.

Now let us assume that () contains a forbidden pair {n;, n;y1}, so that

1 1 1
—+ > (3)

n; Ni4+1 2

and n;, n;41 > 3. We shall show that the geodesic ; with the end points w =
(Rit1, Niyo, ...) and u = cr 1 ) is not positive by showing that it intersects

Mi—1...



ARITHMETIC CODING AND ENTROPY 577

the unit circle |z| = 1 at a point zg = 2 +iyg with 2y > 1/2, which can be rewritten
in terms of the end points of v, u and w as

2(uw + 1) — (u+w) > 0. (4)
We write w = n;41 — 1/a and 1/u = n; — 1/8, where o = (nji2, nijts, ...) and
8= (ni—1, nj—a, ...). Since n; > 3, a > 2 and 8 > 2. Now we can rewrite (4) as
aﬂ(?(nlﬂ + nl) — Nj41Ny — 1) + (ni+1 — 2)& + (TLZ — 2)ﬂ -1
a(n;—1) '

Since (3) is equivalent to 2(n;+1 +n;) —nit1n; —1 > 0 and n; and n;41 are at least
3, we see that the numerator of the last expression is positive. The denominator is
also positive, which completes the proof. O

2.2. Symbolic dynamics for the positive geodesic flow. The set of sequences
(..., no, n1, N2, ...) which satisfy ni + n#“ < % for all i, i.e., are subject to the
Platonic restrictions, can be described with the help of an infinite matrix A of zeros
and ones where A(i, j) = 0 precisely when the pair {7, j} is prohibited:

== =00
== =0 O

In compliance with Theorem 7 we shall call such sequences positive. The set of
positive sequences can be described as

Xa={zeX: Aln;, nj41) =1},

and the restriction o|x, = 04 is a countable topological Markov chain. Positive
periodic sequences correspond to the periodic orbits of o4 and are dense in X 4.
By [9], Cor. 2.9 they correspond to the positive closed geodesics on the modular
surface.

By Theorem 7, the behavior of a positive geodesic y(x) in F is pretty regular.
It enters the fundamental region F' through the side as (see Figure 1), and after a
number of hits of the vertical side vy hits the side a; (we call this a “coil”), thus
returning to the side ay after the identification in F'. The function f(x) restricted
to X 4 is the length of this coil, or the time of the first return to the set P. Using
the function f(x) as the ceiling function we define the usual special flow ¢; on the
space

Xi={(z,y): 2 € X4, 0<y < f(2)}

by the formula ¢ (z, y) = (z, y + t) using the identification (z, f(z)) = (caz, 0).
This is a symbolic representation of the positive geodesic flow {¢;} defined as a
restriction of the geodesic flow {¢;} on SM to the subset X C STM consisting of
all vectors in SM tangent to positive geodesics (see Introduction). The set ¥V is
{¢+}-invariant and noncompact. It is the maximal {¢; }-invariant subset of X+.
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There is a one-to-one correspondence between the periodic orbits of 04 and the
closed orbits of the special flow ¢; so that the lengths of the latter are equal to the
lengths of the corresponding positive closed geodesics.

Since f(x) is cohomologous to a simple function 2log w(x), and the special flows
corresponding to those functions are topologically conjugate [15], it is sufficient to
consider the special flow with the ceiling function f(z) = 2logw(x).

3. ENTROPY OF THE POSITIVE GEODESIC FLOW

In this section we obtain a two-sided estimate for the topological entropy of
the flow {¢;"}. Under the definition adopted in this paper (see Introduction), the
topological entropy h(-) turns out to be invariant with respect to a continuous con-
jugacy (and even a Borel measurable conjugacy) of dynamical systems. Therefore
h({pf}) = h({¢:}), where {¢;} is the special flow over X 4 with the ceiling function
f(z) = 2logw(x), described above.

In order to explain how to obtain the estimates of h({p;}), we consider a
more general situation. Let A be a o-invariant Borel subset of the sequence space
X = NZ. Given a Borel measurable function g: A — R such that inf,es g(z) > 0,
one can define a special flow {¢:} = (A, g) on the space

A ={(z,y):z €A 0<y < g(a)}

much as the flow {¢,} was defined above. Let i be an arbitrary {t, }-invariant Borel
probability measure on A9 and ' its projection onto A. The sets C, = {z} x A,,
x € A, where A, = {y: 0 <y < f(z)}, constitute a measurable partition of A9.
The {4 }-invariance of f implies that the conditional measure on C, induced by [
is the normalized Lebesgue measure on A, for p'-almost all  (here we identify C,,
and A;). By definition the function z — 1/g(z) is bounded and hence p'-integrable.
So we can introduce a measure p on A by

p' (dz)
g()

It is easy to check that K = [ A 9dp, 1 is a probability measure, and that fi is the
restriction to AY of the direct product p x ¢, divided by K, where £ is the Lebesgue
measure on R. Moreover, p is o-invariant.

Conversely, given a o-invariant probability measure p on A such that || Agdp <
00, one can define fi as above and make sure that f is a {i;}-invariant Borel
probability measure on A9. Thus we have a one-to-one correspondence between the
set I4(A) of o-invariant probability measures on A under which g is integrable and
the set I(AY) of all {¢; }-invariant probability measures on AY.

For each measure p € I;(A) we denote by h, the measure-theoretic entropy of o
with respect to p. The entropy of the flow {t;} with respect to the measure i will
be denoted by h;({1:}). Recall that by definition h;({¢:}) = hi(¥1) and that by
Abramov’s formula [1] hz({¢:}) = h,./ [, g dp. Hence

) =K ) where 1= [ [ <1/g<x>>u’<dm>}l.

o) = s ([ gdu)l- 5)

nelq(A)
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Let g > ¢’ on A, and let {¢);} = (A, ¢'). Then by (5) h({t)+}) < h({¥;}).
Theorem 8. 0.7771 < h({p]}) < 0.8161.
Proof. The special flow {¢;} is of the type considered above with A = X4 and
g=f,ie,{d} = (Xa, f). The function f(z) = 2logw(z) can be extended to
the whole space X since the formulae (1) make sense for any x € X. For every
x = (n;)iez € X we write n; = n;(x). It is easy to show that since for z € X4
n;(z) > 3, we have

2logeny (z) < f(z) < 2logni(z), where c¢=(3+V5)/6~0.8726. (6)

Thus the ceiling function is estimated by two functions which depend only on
the first coordinate nj(x). Using a formula for the topological entropy by Polyakov
[17] based on a result of Savchenko [19] for (X4, gs5), with gs(x) = 21og dnq(x), for
0 =1 and § = ¢ we obtain the estimates

hy = 0.7771 < h({¢] }) < 0.8161 = h,.
The estimated values hs are solutions of the equation Us(s) = 1, where
G(s)(1+ (30)72% — (126) 725 — (155) %)
1—(40)725 — (56)~2s
and G(s) is related with the Riemann (-function by the formula

5
G(s) =672 (g(—2s) - n2s> .
n=1

They were obtained with the help of the computer package Pari-GP. U

4. ENTROPY OF THE GEODESIC FLOW FOR CONSTANT CURVATURE

We conclude this paper by showing that the topological entropy of the geodesic
flow on a quotient of H by any geometrically finite Fuchsian group of the first kind
is equal to one. This confirms that the topological entropy of the positive geodesic
flow on the modular surface is strictly less than that of the full geodesic flow.

Let T' be a geometrically finite Fuchsian group of the first kind, M = I'\H,
SM its unit tangent bundle, and m be the Riemannian volume on SM, i.e., the
measure induced by the hyperbolic measure on the upper half-plane. It is standard
that m(SM) < oo and that m is an invariant measure for the geodesic flow {¢}
on SM. A theorem of Sullivan for geometrically finite Kleinian groups [21] states
that the entropy of the geodesic flow relative to the (normalized) canonical measure
obtained from the unique geometric measure on the limit set A(T") (on the set of non-
wandering geodesics) is equal to the Hausdorff dimension of A(T'). In the case when
T" is a geometrically finite Fuchsian group of the first kind, the canonical measure
is the Riemannian volume on SM and A = R U oo, so its Hausdorff dimension is
equal to one. Therefore, the entropy of the geodesic flow on SM relative to the
normalized Riemannian volume is equal to one.

In [21] Sullivan also states that this measure must be a measure of maximal
entropy, as in the compact case. The argument we present below is based on an
adaptation of arguments of A.Katok [5] and [6] to a non-compact case, and the
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Prime Geodesic Theorem of Sarnak for constant curvature ([18], Ch. 3) obtained
with the use of the Selberg Trace Formula.

Let 1 be any Borel probability measure on SM invariant with respect to the
geodesic flow {¢;}, and P(s) be the number of periodic orbits of {¢:} of period < s.

Theorem 9. lim log P(s) > hu({e}).
§—00 S
Proof. Theorem 4.1 of [6] establishes the corresponding estimate for any C'*9

(6 > 0) flow without fixed points on any 3-dimensional compact manifold (see
the original argument for diffeomorphisms in [5]). The argument works without
compactness assumption but with certain restrictions on the flow, in particular, in
our case.

Let d be a distance function on SM generated by the hyperbolic metric on M.
For every s > 0 we define a metric ds on SM by

ds(z, y) = Orgggsd(%x, 1Y)

Its discrete counterpart d’, is defined by the same formula where s and ¢ are assumed
to be nonnegative integers. For s, €, § > 0 we denote by N(s, €, §) (respectively,
N.(s, €, d)) the minimal number of e-balls in the metric dy that cover a set (re-
spectively, a compact set) of measure > 1 — 4. Let N'(s, ¢, §) and N.(s, €, 0) be
corresponding numbers for the metric d’,. It is easy to verify that

Nc(s, €, 6) > N.([s], €, 0) > N'([s], ¢, ). (7)

We now show that
log N'([s], €, &
(1) < lim 1t (2B ¢ 9) (3)
e—0s 500 S
Theorem 1.1 in [5] contains such an estimate for an arbitrary homeomorphism
f of a compact metric space (X, d) and any f-invariant Borel probability measure
pon X. The compactness assumption is not satisfied in our case, i.e., for f = 1.
But by analyzing the argument in [5], one can make sure that it goes through if X
is o-compact and f is continuous, and even Borel measurable, and is based only on
the existence of a partition described in the following lemma.

Lemma 10. For any a > 0 there is a finite measurable partition € of X such that

hu(f, §) = hu(f) —

and p(dc) = 0 for every element c € &, where Jc is the boundary of c.

By assumption there is a sequence of compact subsets X,, C X such that X,y D
X, and |J, X;, = X. In our case a partition & will consist of a finite number of
elements of sufficiently small diameter covering X, for sufficiently large n, and
one element of sufficiently small measure. It is easy to make the measures of the
boundaries of all elements equal to zero. The estimate

ha({oe}) < lim lim 285 € 9)

e—0 s 5o S

(9)

now follows from (8), (7).
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For every compact set K C SM with u(K) > 1 —§ we denote by P(s, ¢, d, K)
the maximal number of points in K which are e-separated in the metric d,. Let

P(s, € 0) = ir}sz(s, €, 0, K).

Since N (s, €, §) < P(s, €, 0), one obtains from (9) a similar estimate of h,({¢:}) in
terms of the exponential growth of P(s, €, §) which is the same as the exponential
growth of e-separated orbit segments which return much closer than € to their initial
conditions (say, e2-close) in a compact subset of SM of measure > 1—§ in the time
between (1 — €)s and s. The last conclusion is derived from the flow version of the
argument in the proof of Theorem 4.3 of [5] and uses the Birkhoff ergodic theorem
as in the compact case.

Finally, the periodic orbits are produced exactly as in the compact case by the
choice of a particular compact subset of SM of measure > 1 — § and with the help
of the Anosov Closing Lemma [2] which holds in our case (see the argument for
geodesic flow on quotients by any Fuchsian group of the first kind in Appendix

to [3]) instead of the main closing type lemma required in [5], §3. €?-closeness of
e-separated orbit segments assures us that the obtained periodic orbits are different
for different e2-close orbits. O

The same inequality now holds for the topological entropy.

Corollary 11.

lim log P(s)

§— 00

> h({¢e})-

Theorem 12. The topological entropy of the geodesic flow on a quotient of H by
a geometrically finite Fuchsian group of the first kind is equal to one.

Proof. We know that h({y:}) > 1. Assume that h({¢:}) = h > 1. Then

log P
im 28P0) Sy
5—00 S
while by Sarnak’s Prime Geodesic Theorem ([18], Ch. 3) P(s) ~ e®/s, a contradic-
tion. t
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