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Abstract. In this note we extend the results of [3] which deal with description
of smooth untwisted cohomology for Z

k-actions by hyperbolic automorphisms
of a torus, to the partially hyperbolic case. Along the way we correct an error
found at one of the steps in the proof for the hyperbolic case.

1. Introduction; formulation of results

In this note we extend the results of [3] which deal with description of smooth
untwisted cohomology for Zk-actions by hyperbolic automorphisms of a torus, to
the partially hyperbolic case. Along the way we correct an error found at one of the
steps in the proof. Most of the steps in the proof in [3] actually hold for the partially
hyperbolic case. The principal difference lies in obtaining growth estimates from
below for the dual orbits of the action. At the end of [3, §3] we indicate an approach
to the partially hyperbolic case and acknowledge the fact that the estimates in that
case cannot be uniform since the lattice points can be found arbitrary close to
the eigenspaces corresponding to eigenvalues of absolute value 1. We outlined a
scheme of handling the estimates in the partially hyperbolic case. Ironically, the
uniform estimates from below claimed in [3, Theorem 3.1] are not correct for the
general hyperbolic situation either although they hold for some special situations,
such as the TNS (totally non-symplectic) actions. Thus we need these more subtle
estimates already in the hyperbolic case. We use definitions and notations from
[3] without special notice. In several crucial instances we will provide references to
specific places in that paper.

Let A be an invertibleN×N matrix with integer entries. It generates a surjective
endomorphism on the N dimensional torus TN which we will denote by the same
latter A. The dual endomorphism ZN → ZN is given by the transpose matrix tA.
Recall that the following conditions are equivalent:

(1) The endomorphism A is ergodic with respect to Lebesgue measure.
(2) The set of periodic points of A coincides with the set of points in TN with

rational coordinates.
(3) None of the eigenvalues of the matrix A are roots of unity.
(4) The matrix A has at least one eigenvalue of absolute value greater than one

and has no eigenvectors with rational coordinates.
(5) All orbits of the dual map tA : ZN → ZN , other than the trivial zero orbit,

are infinite.
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Definition. An endomorphism A satisfying properties (1) – (5), as well as its
matrix A, is called partially hyperbolic.

Notice that the matrix transposed to a partially hyperbolic matrix is partially
hyperbolic.

Let α be an action of Zk by partially hyperbolic automorphisms of TN , i.e. any
element of the action, other than identity, is partially hyperbolic. Let P(α) be the
set of all closed (finite) orbits of α. To each C ∈ P one associates the α-invariant
measure σC concentrated on that orbit: σC = 1

|C|

∑

x∈C δx. We say that a k-cocycle

over α vanishes on C if [ϕ]C :=
∫

TN ϕdσC = 0.
The new estimates enable us to establish the following results in the partially

hyperbolic case:

Theorem 1.1. Let α be an action of Zk by partially hyperbolic automorphisms of

TN , and ϕ be a C∞ k-cocycle over α with values in R` (` ≥ 1) that vanishes on all

periodic orbits of Zk, i.e. [ϕ]C = 0 for each C ∈ P(α). Then for x ∈ TN , t ∈ (Zk)k

(1) ϕ(x, t) = DΦ(x, t),

where Φ is a C∞ (k − 1)-cochain.

Theorem 1.2. Let α be an action of Zk by partially hyperbolic automorphisms of

TN , and ϕ be a C∞ n-cocycle over α with values in R` (` ≥ 1) and 1 ≤ n ≤ k−1.
Then ϕ is C∞-cohomologous to a constant cocycle ψ, i.e. for x ∈ TN , t ∈ (Zk)n

(2) ϕ(x, t) = ψ(t) + DΦ(x, t),

where Φ is a C∞ (n− 1)-cochain.

Let α be an action of Zk by partially hyperbolic automorphisms of TN , and β be
the dual action on ZN with generators B1, . . . , Bk ∈ GL(N,Z), the group of N×N
matrices with integer entries and determinant ±1. Since B1, . . . , Bk are commuting
real matrices, the space RN can be decomposed into a direct sum of β-invariant
subspaces

(3) RN = I1 ⊕ · · · ⊕ Ir,

such that the minimal polynomial of Bj on Ii is a power of an irreducible polynomial
(linear or quadratic) over R. According to this decomposition matrices B1, . . . , Bk

can be simultaneously brought to the following form with square blocks along the
diagonal:

Λ1 =







Λ11 . . . 0
...

. . .
...

0 . . . Λr1






, . . . ,Λk =







Λ1k . . . 0
...

. . .
...

0 . . . Λrk






.

For 1 ≤ i ≤ r the blocks Λij correspond to either real eigenvalues λij of Bj or the

pairs of complex conjugate eigenvalues (λij , λij). For more details on this decom-
position see [3, §3].

For each t = (t1, . . . , tk) ∈ Zk \ {0}, βt = Bt1
1 · · ·Btk

k is a partially hyperbolic
automorphism, hence O(m), the orbit of the point m ∈ ZN \ {0}, is of rank k, i.e.
O(m) ≈ Zk. For each t ∈ Zk we have a decomposition of RN into a direct sum
of expanding, neutral, and contracting subspaces, RN = V +

t ⊕ V ◦
t ⊕ V −

t such that
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βt(V i
t ) = V i

t , i ∈ {+, ◦,−}. These subspaces are direct sums of Iis with positive,
zero, and negative Lyapunov exponents

χi(t) =

k
∑

j=1

tj ln |λij |, i = 1, . . . , r,

respectively. Both V +
t and V −

t are non-trivial for all t ∈ Zk \ {0}. We use the

following norms: for t ∈ Zk, ‖t‖ =
∑k

j=1 |tj |, and for x ∈ ZN (or RN ), we decompose

it according to (3), x = (x1, . . . , xr) and let ‖x‖ =
∑r

i=1 ‖xi‖, where ‖xi‖ is a norm
on Ii (see [3, §3] for details).

2. Orbit growth for the dual action

The following result replaces Theorem 3.1 from [3] whose proof contains an
error in the below estimate part. The error was found due to a comment by E.
Lindenstrauss who pointed out an inaccuracy in an argument in the original version
of [2] which was based on the incorrect below estimate.

Our result here holds in a more general situation but contains a weaker below
estimate.

Theorem 2.1. Let α be an action by commuting partially hyperbolic automor-

phisms of TN , and β be the dual action. Then there exist constants a, b, C1, C2 > 0
depending on the action only such that for any initial point m ∈ ZN

C1‖m‖−N exp(b‖t‖) ≤ ‖βtm‖ ≤ C2‖m‖ exp(a‖t‖).

Remark. The difference with the statement of Theorem 3.1 of [3] (other than the
latter only refers to the hyperbolic case) is in the estimate from below which is not
uniform and that the estimates hold for any initial point m.

Proof. We first establish the estimates in the the semisimple case, i.e. when the
matrices B1, . . . , Bk are simultaneously diagonalizable over C. The estimate from
above is a general fact; in particular it follows from [3, Lemma 3.3(2)] for any choice
of the initial point m.

Now we proceed to a proof of the crucial estimate from below. Let V ⊂ RN be
a β-invariant subspace, and Λ = V ∩ZN . Then Λ is either trivial or infinite. In the
latter case Λ ≈ Zd for some 1 ≤ d ≤ N , and β|Λ is dual to the restriction of α to
an invariant d-dimensional subtorus. Hence it is also partially hyperbolic. This is
because for each t ∈ Zk each eigenvalue of βt|Λ is also an eigenvalue of βt|V and βt,
and if βt|Λ has an eigenvalue which is a root of unity, then so does βt. Moreover,
Rd spanned by Λ is decomposed into a direct sum of β-invariant subspaces

Rd = ⊕i∈II′i,

where I ⊂ {1, 2, . . . , r} and I′i ⊂ Ii so that the minimal polynomial of Bj on I′i
divides the minimal polynomial of Bj on Ii. Thus we have |I| Lyapunov exponents
for β|Λ:

χi(t) =
k

∑

j=1

tj ln |λij |, i ∈ I.

Each non-trivial β-invariant lattice Λ gives rise to a subset I ⊂ {1, . . . , r}, and
hence there are only finitely many types of such lattices. (Notice that there may be
infinitely many lattices of the same type.)
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We denote the collection of all subsets I ⊂ {1, 2, . . . , r} obtained by non-trivial
β-invariant lattices by I0; I0 6= ∅ since it includes {1, . . . , r}.

For each Λ we make the following construction. Since β|Λ is a partially hyperbolic
action, not all χi, i ∈ I, are identically 0, and hence, as follows from [3, Lemma
3.2], for any t ∈ Rk there exists a i ∈ I such that χi(t) > 0. The function M(t) =
maxi χi(t) is continuous and achieves its minimum on the unit sphere Sk−1 ⊂ Rk

which must be positive by the above argument. Let bI = minSk−1 M(t). Then for
any t/‖t‖ ∈ Sk−1, maxi∈I χi(t/‖t‖) ≥ bI , hence there exists a i ∈ I for which
χi(t) ≥ bI‖t‖. Let b = minI∈I0 bI ; b > 0.

Now let m ∈ ZN be any non-zero initial point. It belongs to a β-invariant lattice
Λ of minimal dimension d, Λ ≈ Zd, therefore β is irreducible over Q on Rd spanned
by Λ. Hence β|Rd is separable (has no repeated eigenvalues) since otherwise the
minimal polynomial of β|Λ would not be relatively prime with its derivative, i.e.
the minimal polynomial would factor over Q, and since it is monic, by Gauss’ lemma,
it would factor over Z, which contradicts the fact that irreducibility of the action
implies that the action contains a matrix with irreducible characteristic polynomial
[1].

Now, for I ⊂ I0 corresponding to the lattice Λ we choose an index i as above,
so that χi(t) ≥ bI‖t‖ ≥ b‖t‖ > 0, and take the corresponding eigenspace I′i. Then
Rd = I′i ⊕ ⊕j∈I−{i}I

′
j , where βt|I′

i
and βt|⊕j∈I−{i}I′j have no common eigenvalues,

and also ⊕j∈I−{i}I
′
j ∩ Zd = {0}.

Let mi be a projection of m to I′i. Then, by Katznelson’s lemma [4, Lemma 3],
there exists a constant γI such that

‖mi‖ ≥ d(m,V ) ≥ γI‖m‖−N ,

where d is the Euclidean distance, and the constant γI depends only on the splitting
(3) for the action β. Thus, we have

(4)
‖βtm‖ =

r
∑

j=1

expχj(t)‖mj‖ ≥ expχi(t)‖mi‖

≥ exp(b‖t‖)‖mi‖ ≥ exp(b‖t‖)γI‖m‖−N .

So, our estimate holds with C1 = γI for any initial point m.
If the action is not semisimple, only the polynomial growth in ‖t‖ may occur in

addition due to the presence of unipotent factors. Thus, the same estimates will
hold with slightly smaller b and slightly larger a. This completes the proof of the
theorem. �

3. Estimates for the solution of the coboundary equation

Proposition 3.1. Let α be an action of Zk by partially hyperbolic automorphisms

of TN , and ϕ be a C∞ k-cocycle over α with values in R` (` ≥ 1) such that for

any non-trivial dual orbit O,
∑

m∈O ϕ̂(m) = 0. Then ϕ is C∞-cohomologous to a

constant cocycle ψ, i.e. for x ∈ TN , t ∈ (Zk)k

(5) ϕ(x, t) = ψ(t) + DΦ(x, t),

where Φ is a C∞ (k − 1)-cochain.
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Proof. We proceed by first constructing a dual cochain Φ̂ on each non-trivial dual
orbit as in [3, Proposition 2.2]. We follow the scheme of the proof of [3, Proposition
4.1] with modifications due to non-uniformity of the estimates for the growth of
dual orbits.

Since the cocycle ϕ is C∞ we have the following estimate on the decay of the
dual cocycle ϕ̂: for any for any positive integer B there exists C = C(B) such that

(6) |ϕ̂(m)| ≤ C‖m‖−B.

We want to obtain a similar estimate on the decay of each component of the dual
cochain Φ̂j (1 ≤ j ≤ k). Each 0 6= m ∈ ZN belongs to some dual orbit O(m∗),
where now we choose the initial point m∗ to be one of “the lowest”: ‖m∗‖ =
mins∈Zk ‖βs(m∗)‖. Then ‖m∗‖ ≥ 1 and m = βtm∗ for some t ∈ Zk.

Let t = (t1, . . . , tk). Formula (2.5) of [3] shows that Φ̂j(β
tm∗) = 0 if at least one

of the coordinates t1, . . . , tj−1 is not equal to 0, hence it is sufficient to consider
only the case when t1 = · · · = tj−1 = 0. Fix s = (0, . . . , 0, tj, . . . , tk) and consider
the following half-lattice

Hj = {r ∈ Zk | r = (r1, . . . , rj−1, rj , 0, . . . , 0), rj ≥ 0 if tj ≥ 0,

rj < 0 if tj < 0}.

We write s = s+ s̄, where s = (0, . . . , 0, sj , . . . , sk) with

si =











ti

2 if ti is even
ti−1

2 if ti > 0 is odd
ti+1

2 if ti < 0 is odd,

and s̄ = (0, . . . , 0, s̄j, . . . , s̄k) with

s̄i =











ti

2 if ti is even
ti+1

2 if ti is odd
ti−1

2 if ti is odd.

Then ‖s‖ ≤ ‖s̄‖, and since the norm we use is additive, ‖s+ r‖ = ‖s‖+ ‖s̄‖ + ‖r‖.
By formula (2.5) of [3]

(7) |Φ̂j(β
sm∗)| ≤

∑

r∈Hj

|ϕ̂(βr+sm∗)|.

The following method for estimation of the right-hand side of (7) is a gen-
eralization and modification of an argument used by Veech [5]. Let us fix t0 =
dN+1

b
ln ‖m∗‖e so that the inequality

(8) ‖m∗‖−N ≥ ‖m∗‖ exp(−bt0)

holds.
We split the right-hand side of (7) into two sums, S1(β

sm∗) and S2(β
sm∗) where

S1(β
sm∗) is a finite sum over r such that ‖s+ r‖ < 4t0, where we are going to use

the simple estimate

(9) ‖βr+sm∗‖ ≥ ‖m∗‖,

and S2(β
sm∗) is the infinite one over r with ‖s+ r‖ ≥ 4t0, where the exponential

estimates of Theorem 2.1 prevail and become uniform.

Estimate of S2(β
sm∗). Since ‖s+ r‖ ≥ 4t0, then ‖s‖ ≥ 2t0, or ‖r‖ ≥ 2t0.
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Case 1: ‖r‖ ≥ 2t0. Using (8) we obtain

(10)
‖βr+sm∗‖ ≥ C1‖m

∗‖−N exp(b(‖r + s‖) ≥ C1‖m
∗‖ exp(b(‖r + s‖ − t0))

=C1‖m
∗‖ exp(b(‖s‖)) exp(b(‖r‖ − t0)).

The estimate from above of Theorem 2.1 gives

‖βsm∗‖ ≤ C2‖m
∗‖ exp(a‖s‖).

Then for some constant C3 > 0, since ‖m∗‖ ≥ 1 and b ≤ a, we obtain

(11) ‖βsm∗‖
b
a ≤ C3‖m

∗‖
b
a exp(b‖s‖) ≤ C3‖m

∗‖ exp(b‖s‖).

Now we use (10) to obtain

‖βr+sm∗‖ ≥ C4‖β
sm∗‖

b
a exp(b(‖r‖ − t0))

for yet another constant C4 > 0. Using (6) we obtain

|ϕ̂(βr+sm∗)| ≤ C‖βr+sm∗‖−B

≤ CC−B
4 ‖βsm∗‖−B b

a exp(−Bb(‖r‖ − t0)).

Since ‖r‖ > t0, the series
∑

r∈Hj

exp(−Bb(‖r‖ − t0))

converges and is estimated by some constant C5 > 0. Therefore, for some constants
C6, C7 > 0 we obtain

(12) S2(β
sm∗) ≤ C6‖β

sm∗‖−B b
a

∑

r∈Hj

exp(−Bb(‖r‖ − t0)) ≤ C7‖β
sm∗‖−B b

a ,

i.e. for m = βsm∗ we obtain a super-polynomial estimate for S2(m):

(13) S2(m) ≤ C7‖m‖−B b
a .

Case 2: ‖s‖ ≥ 2t0. Since ‖s+ r‖ ≥ t0, we have

(14)
‖βr+sm∗‖ ≥ C1‖m

∗‖ exp(b(‖r + s‖ − t0))

= C1‖m
∗‖ exp(b(‖s̄‖)) exp(b(‖s+ r‖ − t0)).

Using the estimate (11) with s replaced by s̄:

‖βs̄m∗‖
b
a ≤ C3‖m

∗‖ exp(b‖s̄‖)

and (14) we obtain

‖βr+sm∗‖ ≥ C8‖β
s̄m∗‖

b
a exp(b(‖s+ r‖ − t0))

for yet another constant C8 > 0. By (6) we have

|ϕ̂(βr+sm∗)| ≤ C‖βr+sm∗‖−B

≤ CC−B
4 ‖βs̄m∗‖−B b

a exp(−Bb(‖s+ r‖ − t0)).

Since ‖s+r‖ ≥ t0, as before,
∑

r∈Hj exp(−Bb(‖s+r‖− t0)) < C9 for some constant
C9 > 0, and for some constants C10, C11 > 0 we obtain

(15) S2(β
sm∗) ≤ C10‖β

s̄m∗‖−B b
a

∑

r∈Hj

exp(−Bb(‖s+ r‖− t0)) ≤ C11‖β
s̄m∗‖−B b

a .
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Now, since ‖s‖ ≥ 2t0, ‖s̄‖ ≥ 2t0, hence ‖s̄/2‖ ≥ t0 and

exp(b(‖s̄‖ − t0) ≥ exp(b‖s̄/2‖).

Therefore, by the lower estimate of Theorem 2.1 and since ‖m∗‖ ≥ 1, we have

(16)
‖βs̄m∗‖ ≥C1‖m

∗‖ exp(b(‖s̄‖ − t0))

≥C1‖m
∗‖ exp(b‖s̄/2‖) ≥ C1 exp(b‖s̄/2‖).

On the other hand, by the upper estimate of Theorem 2.1, and using (16) we
obtain for some constant C12 > 0

‖βsm∗‖ =‖βs(βs̄m∗)‖ ≤ C2‖β
s̄m∗‖ exp(a‖s‖) ≤ C2‖β

s̄m∗‖ exp(a‖s̄‖)

=C2‖β
s̄m∗‖ exp(b‖s̄/2‖)

2a
b ≤ C12‖β

s̄m∗‖1+ 2a
b .

Therefore for yet another constant C13 > 0,

‖βs̄m∗‖−B b
a ≤ C‖βsm∗‖−BL,

where L = b2

a(b+2a) . Plugging this into (15) and letting βsm∗ = m, we obtain a

super-polynomial estimate for S2(m):

(17) S2(m) ≤ C‖m‖−BL.

Estimate of S1(β
sm∗). We first use the upper estimate of Theorem 2.1 to obtain

‖βsm∗‖ ≤ C2‖m
∗‖ exp(a‖s‖).

Since ‖s‖ ≤ 8t0 + k (k is the rank of the action), exp(a‖s‖) ≤ C14‖m∗‖
8a(N+1)

b , for
some constant C14 > 0 and hence

‖βsm∗‖ ≤ C14‖m
∗‖1+ 8a(N+1)

b ,

which implies that for C15 = C−1
14

(18) ‖m∗‖ ≥ C15‖β
sm∗‖K ,

where K = b
b+8a(N+1) , a constant depending only on the action β, not on the

particular orbit, 0 < K < 1. The simple estimate (9) combined with (18) gives us

‖βr+sm∗‖ ≥ ‖m∗‖ ≥ C15‖β
sm∗‖K .

Therefore
|ϕ̂(βr+sm∗)| ≤ C‖βr+sm∗‖−B

≤ CC−B
15 ‖βsm∗‖−BK .

Now, since ‖r + s‖ ≤ 4t0, the number of terms in the finite sum S1(m), where
m = βsm∗, is ≤ (4t0)

k, and we obtain for some constant C16 > 0

(19) S1(m) ≤ C16‖m‖−BK(ln ‖m∗‖)k ≤ C16‖m‖−BK(ln ‖m‖)k,

but since for every ε > 0 there exists C17 > 0 such that (ln ‖m‖)k ≤ C17‖m‖ε (for
‖m‖ ≥ 2), taking ε < BK

2 we obtain for some constant C18

(20) S1(m) ≤ C18‖m‖−BK+ε = C18‖m‖−B K
2 .
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Completion of the proof. Combing (20) with (13) or (17) we obtain a super-polynomial

estimate for Φ̂ for some C19 > 0 and M > 0

|Φ̂j(m)| ≤ C19‖m‖−BM .

Thus we have obtained global estimates on the decay of Φ̂j . Letting Φ̂j(0) = 0 and
using (2.1) and (2.2) of [3] we therefore obtain a C∞ (k−1)-cochain Φ = (Φ1, . . . , Φk)
such that

DΦ = ϕ− ϕ̂(0),

i.e. is a solution of our equation (5). �

The proofs of Theorems 1.1 and 1.2 now follow exactly as in [3].
For the proof of Theorem 1.1 we first apply [3, Corollary 1.4] to conclude that

if a C∞ k-cocycle over α, ϕ, vanishes on all periodic orbits of α, then for any dual
orbit O, including 0,

∑

m∈O ϕ̂(m) = 0. Now, by Proposition 3.1 DΦ = ϕ − ϕ̂(0),
and since ϕ̂(0) = 0 we obtain a solution of (1).

For Theorem 1.2, the assertion (2) for 1-cocycles is proved using [3, Proposition
2.3] and estimates of Proposition 3.1. The assertion (2) for n-cocycles, 1 ≤ n ≤ k−1,
follows by induction on k. Our hypothesis holds for the highest cocycles for which
their dual cocycles vanish over each dual orbit (Proposition 3.1) and for 1-cocycles.
These cases are considered as the base step in our induction argument which goes
exactly as in [3, p. 591].
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