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STRUCTURE OF ATTRACTORS FOR (a,b)-CONTINUED FRACTION
TRANSFORMATIONS

SVETLANA KATOK AND ILIE UGARCOVICI
(Communicated by Jens Marklof)

ABSTRACT. We study a two-parameter family of one-dimensional maps and
related (a,b)-continued fractions suggested for consideration by Don Zagier.
We prove that the associated natural extension maps have attractors with fi-
nite rectangular structure for the entire parameter set except for a Cantor-like
set of one-dimensional Lebesgue zero measure that we completely describe.
We show that the structure of these attractors can be “computed” from the
data (a,b), and that for a dense open set of parameters the Reduction the-
ory conjecture holds, i.e., every point is mapped to the attractor after finitely
many iterations. We also show how this theory can be applied to the study of
invariant measures and ergodic properties of the associated Gauss-like maps.
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1. INTRODUCTION

The standard generators T (x) = x + 1, S(x) = −1/x of the modular group
SL(2,Z) were used classically to define piecewise continuous maps acting on
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the extended real line R̄=R∪ {∞} that led to well-known continued fraction al-
gorithms. In this paper we present a general method of constructing such maps
suggested by Don Zagier, and study their dynamical properties and associated
generalized continued fraction transformations.

Let P be the two-dimensional parameter set

P = {
(a,b) ∈R2 | a ≤ 0 ≤ b, b −a ≥ 1, −ab ≤ 1

}
,

and consider the map fa,b : R̄→ R̄ defined as

(1.1) fa,b(x) =


x +1 if x < a,

−1/x if a ≤ x < b,

x −1 if x ≥ b.

Using the first-return map of fa,b to the interval [a,b), denoted by f̂a,b , we in-
troduce a two-dimensional family of continued fraction algorithms and study
their properties. We mention here three classical examples: the case a =−1/2,
b = 1/2 gives the “nearest-integer” continued fractions considered first by Hur-
witz in [7], the case a = −1, b = 0 described in [23, 9] gives the “minus” (back-
ward) continued fractions, while the situation a = −1, b = 1 was presented in
[21, 10] in connection with a method of symbolically coding the geodesic flow
on the modular surface following Artin’s pioneering work [3]. We remark that in
the case b −a = 1, the class of one-parameter maps fb−1,b with b ∈ [0,1] is con-
ceptually similar to the “α-transformations” introduced by Nakada in [18] and
studied subsequently in [4, 5, 15, 16, 17, 19, 20, 22]. Also, in the case a =−b, the
one parameter family f−b,b with 1/2 ≤ b ≤ 1 is related to a class of maps (factors
of α-transformations) studied in [4, 17].

The main object of our study is a two-dimensional realization of the natural
extension map of fa,b , Fa,b : R̄2 à∆→ R̄2 à∆, ∆= {(x, y) ∈ R̄2 | x = y}, defined by

(1.2) Fa,b(x, y) =


(x +1, y +1) if y < a,

(−1/x, −1/y) if a ≤ y < b,

(x −1, y −1) if y ≥ b.

Numerical experiments led Don Zagier to conjecture that such a map Fa,b has
several interesting properties for all parameter pairs (a,b) ∈P :

REDUCTION THEORY CONJECTURE.

(1) The map Fa,b possesses a global attractor set Da,b =⋂∞
n=0 F n(R̄2à∆) on which

Fa,b is essentially bijective.
(2) The set Da,b consists of two (or one, in degenerate cases) connected compo-

nents each having finite rectangular structure, i.e., bounded by nondecreas-
ing step-functions with a finite number of steps.

(3) Every point (x, y) of the plane (x 6= y) is mapped to Da,b after finitely many
iterations of Fa,b .

REMARK 1.1. If one identifies a pair (x, y) ∈ R̄2à∆ with a geodesic on the upper
half-plane from x to y , then Fa,b maps geodesics to geodesics. The attractor of
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Fa,b corresponds to reduced geodesics, hence the name of the conjecture and
the reason why Fa,b is also called the reduction map. This approach also has
applications to coding symbolically geodesics on the modular surface [14].
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FIGURE 1. Attracting domain for Zagier’s example: a =−4
5 , b = 2

5

Figure 1 shows the computer picture of such a the set Da,b with a = −4/5
and b = 2/5. It is worth mentioning that the complexity of the domain Da,b

increases as (a,b) approach the line segment b − a = 1 in P , a situation fully
analyzed in what follows. The main result of this paper is the following:

MAIN RESULT. There exists an explicit one-dimensional Lebesgue measure zero,
uncountable set E that lies on the diagonal boundary b = a +1 of P such that:

(i) for all (a,b) ∈P àE , the map Fa,b has an attractor Da,b satisfying proper-
ties (1) and (2) above;

(ii) for an open and dense set in P àE , property (3), and hence the Reduction
theory conjecture, holds. For the rest of P àE , property (3) holds for almost
every point of R̄2 à∆.

We point out that this approach gives explicit conditions for the set Da,b to
have finite rectangular structure that are satisfied, in particular, for all pairs
(a,b) in the interior of the maximal parameter set P . At the same time, it pro-
vides an effective algorithm for finding Da,b , independent of the complexity of
its boundary (i.e., number of horizontal segments). The simultaneous proper-
ties satisfied by Da,b , attracting set and bijectivity domain for Fa,b , is an essen-
tial feature that has not been exploited in earlier works. This approach makes
the notions of reduced geodesic and dual expansion natural and transparent,
with a potential for generalization to other Fuchsian groups. We remark that for
“α-transformations” [18, 16], explicit descriptions of the domain of the natural
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extension maps have been obtained only for a subset of the parameter interval
[0,1] (where the boundary has low complexity).

The paper is organized as follows. In Section 2, we develop the theory of
(a,b)-continued fractions associated to the map fa,b . In Section 3 we prove
that the natural extension map Fa,b possesses a trapping region; it will be used
in Section 6 to study the attractor set for Fa,b . In Section 4 we further study the
map fa,b . Although it is discontinuous at x = a, b, one can look at two orbits
of each of the discontinuity points. For generic (a,b), these orbits meet after
finitely many steps, forming a cycle that can be strong or weak, depending on
whether the composite transformations at the end of each side of the cycle are
equal or not. The values appearing in these cycles play a crucial role in the the-
ory. Theorems 4.2 and 4.5 give necessary and sufficient conditions for b and
a to have the cycle property. In Section 5 we introduce the finiteness condition
using the notion of truncated orbits and prove that under this condition the
map Fa,b has a bijectivity domain Aa,b with a finite rectangular structure that
can be “computed” from the data (a,b) (Theorem 5.5). In Section 6 we define
the attractor for the map Fa,b by iterating the trapping region, and identify it
with the earlier constructed set Aa,b assuming the finiteness condition (The-
orem 6.4). In Section 7 we prove that the Reduction theory conjecture holds
under the assumption that both a and b have the strong cycle property, and
that under the finiteness condition, property (3) holds for almost every point of
R̄2à∆. In Section 8 we prove that the finiteness condition holds for all (a,b) ∈P

except for an uncountable set of one-dimensional Lebesgue measure zero that
lies on the boundary b = a+1 of P (Theorem 8.11), and we present a complete
description of this exceptional set. We conclude the proof of the Main Result by
showing that the set of (a,b) ∈P where a and b have the strong cycle property
is open and dense in P (Proposition 8.12). And, finally, in Section 9 we show
how these results can be applied to the study of invariant measures and ergodic
properties of the associated Gauss-like maps.

2. THEORY OF (a,b)-CONTINUED FRACTIONS

Consider (a,b) ∈P . The map fa,b defines what we call (a,b)-continued frac-
tions using a generalized integral part function bxea,b : for any real x, let

bxea,b =


bx −ac if x < a

0 if a ≤ x < b

dx −be if x ≥ b,

where bxc denotes the integer part of x and dxe = bxc+1.
Let us remark that the first-return map of fa,b to the interval [a,b), f̂a,b , is

given by the function

f̂a,b(x) =−1

x
−

⌊
−1

x

⌉
a,b

= T −b−1/xea,b S(x) if x 6= 0, f (0) = 0.
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We prove that any irrational number x can be expressed in a unique way as
an infinite (a,b)-continued fraction

x = n0 −
1

n1 −
1

n2 −
1

. . .

which we will denote by bn0,n1, . . .ea,b for short. The “digits” ni , i ≥ 1, are
nonzero integers determined recursively by

(2.1) n0 = bxea,b , x1 =− 1

x −n0
, and ni = bxi ea,b , xi+1 =− 1

xi −ni
.

In what follows, the notation (α0,α1, . . . ,αk ) is used to write formally a “minus”
continued fraction expression, where αi are real numbers.

THEOREM 2.1. Let x be an irrational number, {ni } the associated sequence of
integers defined by (2.1) and rk = (n0,n1, . . . ,nk ). Then the sequence rk converges
to x.

Proof. We1 start by proving that none of the pairs of type (p,1), (−p,−1), with
p ≥ 1 are allowed to appear as consecutive entries of the sequence {ni }. Indeed,
if ni+1 = 1, then

b ≤ xi+1 =− 1

xi −ni
< b +1.

Therefore, − 1
b ≤ xi −ni <− 1

b+1 ≤ b −1 and ni < 0. If ni+1 =−1, then

a −1 ≤ xi+1 =− 1

xi −ni
< a,

so − 1
a−1 ≤ xi −ni <− 1

a . But a +1 ≤− 1
a−1 , thus ni > 0.

With these two restrictions, the argument follows the lines of the proof for
the classical case of minus (backward) continued fractions [9], where ni ≥ 2,
for all i ≥ 1. We define inductively two sequences of integers {pk } and {qk } for
k ≥−2:

(2.2)
p−2 = 0, p−1 = 1, pk = nk pk−1 −pk−2 for k ≥ 0;

q−2 =−1, q−1 = 0, qk = nk qk−1 −qk−2 for k ≥ 0.

We have the following properties:

(i) there exists l ≥ 1 such that |ql | < |ql+1| < · · · < |qk | < · · · ;
(ii) (n0,n1, . . . ,nk ,α) = (αpk −pk−1)/(αqk −qk−1) for any real number α;

(iii) pk qk+1 −pk+1qk = 1.

1The authors proved initially the convergence statement assuming −1 ≤ a ≤ 0 ≤ b ≤ 1, and
two Penn State REU students, Tra Ho and Jesse Barbour, worked on the proof for a and b outside
of this compact triangular region. The unified proof presented here uses some of their ideas.
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Let us prove property (i) since the proof is more intricate than in the classi-
cal case. Obviously 1 = q0 ≤ |q1| = |n1|, q2 = n2q1 − q0 = n2n1 −1. Notice that
|q2| > |q1| unless n1 = 1, n2 = 2 or n1 = −1, n2 = −2. We analyze the situation
n1 = 1, n2 = 2. This implies that q3 = n3(n2n1 −1)−n1 = n3 −n1, so |q3| > |q2|,
unless n3 = 2. Notice that it is impossible to have ni = 2 for all i ≥ 2, because
x is irrational and the minus continued fraction expression consisting only of
two’s, (2,2, . . . ), has numerical value 1. Therefore, there exists l ≥ 1 such that
nl+1 6= 1,2. This implies that |ql+1| > |ql |. We continue to proceed by induction.
Assume that property (i) is satisfied up to k-th term, k > l . If |nk+1| ≥ 2, then

|qk+1| ≥ |nk+1| · |qk |− |qk−1| ≥ 2|qk |− |qk−1| > |qk |.
If nk+1 = 1, then qk+1 = qk − qk−1. Since qk = nk qk−1 − qk−2 with nk < 0, one
gets

qk−1 =
qk +qk−2

nk
.

We analyze the two possible situations

• If qk > 0 then |qk−2| < qk , so qk +qk−2 > 0 and qk−1 < 0. This implies that
qk+1 = qk −qk−1 ≥ qk > 0.

• If qk < 0, then |qk−2| < −qk , so qk + qk−2 < 0 and qk−1 > 0. This implies
that qk+1 = qk −qk−1 < qk < 0.

Thus |qk | < |qk+1|. A similar argument shows that the inequality remains true if
nk+1 =−1.

To finish the proof we use properties (i)–(iii). First, we see that rk = pk /qk

for k ≥ 0. Moreover, the sequence rk is a Cauchy sequence because

|rk+1 − rk | =
1

|qk qk+1|
≤ 1

(k − l )2 for k > l .

Hence rk is convergent.
In order to prove that rk converges to x, we write x = (n0,n1, . . . ,nk , xk+1),

and look only at those terms (n0,n1, . . . ,nk , xk+1) with |xk+1| ≥ 1. There are in-
finitely many such terms: indeed, if −1 ≤ a < b ≤ 1, then |xk+1| ≥ 1 for all k ≥ 1;
if a < −1 and |xk+1| < 1, then b ≤ xk+1 < 1, so xk+2 = −1/(xk+1 −1) ≥ 1; if b > 1
and |xk+1| < 1, then −1 < xk+1 < a, so xk+2 = −1/(xk+1 +1) ≥ 1. Therefore, the
corresponding subsequence rk = pk /qk satisfies∣∣∣∣ pk

qk
−x

∣∣∣∣= ∣∣∣∣ pk

qk
− pk xk+1 −pk−1

qk xk+1 −qk−1

∣∣∣∣= 1

|qk (qk xk+1 −qk−1)|
≤ 1

|qk |(|qk ||xk+1|− |qk−1|)
≤ 1

|qk |
→ 0.

We showed that the convergent sequence rk = pk /qk has a subsequence con-
vergent to x, therefore the whole sequence converges to x.

REMARK 2.2. One can construct (a,b)-continued fraction expansions for ratio-
nal numbers, too. However, such expansions will terminate after finitely many
steps if b 6= 0. If b = 0, the expansions of rational numbers will end with a tail of
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2’s, since 0 = (1,2,2, . . . ). In this latter case, properties (i)–(iii) listed above still
hold.

REMARK 2.3. It is easy to see that if the (a,b)-continued fraction expansion of a
real number is eventually periodic, then the number is a quadratic irrationality.

It is not our intention to present in this paper some of the typical number-
theoretical results that can be derived for the class of (a,b)-continued fractions.
However, we state and prove a simple version about (a,b)-continued fractions
with “bounded digits”. For the regular continued fractions, this is a classical re-
sult due to Borel and Bernstein (see [6, Theorem 196] for an elementary treat-
ment). We are only concerned with (a,b)-expansions that are written with two
consecutive digits, a result explicitly needed in Sections 7 and 8.

PROPOSITION 2.4. The set Γ(m)
a,b = {

x = b0,n1,n2, . . .ea,b | nk ∈ {m,m+1}
}

has zero
Lebesgue measure for every m ≥ 1.

Proof. First, notice that if m = 1, then the set Γ(1)
a,b has obviously zero measure,

since the pairs (2,1) and (−2,−1) are not allowed in the (a,b)-expansions.
Assume m ≥ 2. Notice that Γ(m)

a,b ⊂ Γ(m)
0,−1 since a formal continued fraction

x = (0,n1,n2, . . . ) with nk ∈ {m,m + 1} coincides with its “minus” (backward)
continued fraction expansion (a = −1, b = 0), x = b0,n1,n2, . . .e−1,0. The reason
is that any sequence of digits ni ≥ 2 gives a valid “minus” continued fraction
expansion.

In what follows, we study the set Γ(m)
0,−1. For practical reasons we will drop

the subscript (0,−1). It is worth noticing that the result for Γ(m)
0,−1 does not fol-

low automatically from the result about regular continued fractions, since there
are numbers for which the (0,−1)-expansion has only digits 2 and 3, while the
regular continued fractions expansion has unbounded digits. We follow the ap-
proach of [6, Theorem 196] and estimate the size of the set Γ(m)

n1,n2,...,nk
⊂ Γ(m)

with the digits n1,n2, . . . ,nk ∈ {m,m +1} being fixed. In this particular case, the
recursive relation (2.2) implies that 1 = q1 < q2 < ·· · < qk . If x ∈ Γ(m)

n1,n2,...,nk
, then

(0,n1,n2, . . . ,nk −1) ≤ x < (0,n1,n2, . . . ,nk ).

Using property (ii), the end-points of such an interval I (m)
n1,...,nk

are given by

(nk −1)pk−1 −pk−2

(nk −1)qk−1 −qk−2
and

nk pk−1 −pk−2

nk qk−1 −qk−2

and the length of this interval is

l (I (m)
n1,...,nk

) = 1

(nk qk−1 −qk−2)((nk −1)qk−1 −qk−2)
= 1

qk (qk −qk−1)

by using that pk−2qk−1 −pk−1qk−2 = 1 and qk = nk qk−1 −qk−2.
Denote by Γ(m)

k the set of numbers in [−1,0) with (−1,0)-continued fraction

digits n1,n2, . . . ,nk ∈ {m,m +1}. The set Γ(m)
k is part of the set

I (m)
k =

⋃
n1,...,nk∈{m,m+1}

I (m)
n1,...,nk

.
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We have the following relation:

I (m)
k+1 =

⋃
n1,...,nk∈{m,m+1}

I (m)
n1,...,nk ,m ∪ I (m)

n1,...,nk ,m+1 .

If x lies in I (m)
n1,...,nk ,m ∪ I (m)

n1,...,nk ,m+1, then

(0,n1,n2, . . . ,nk ,m −1) ≤ x < (0,n1,n2, . . . ,nk ,m +1).

The length of this interval is

l (I (m)
n1,...,nk ,m ∪ I (m)

n1,...,nk ,m+1) = 2(
(m +1)qk −qk−1

)(
(m −1)qk −qk−1

) .

Now we estimate the ratio

l (I (m)
n1,...,nk ,m ∪ I (m)

n1,...,nk ,m+1)

l (I (m)
n1,n2,...,nk

)
= 2qk (qk −qk−1)

((m +1)qk −qk−1)((m −1)qk −qk−1)

≤ 2qk

(m +1)qk −qk−1

≤ 2qk

3qk −qk−1
= 2

3−qk−1/qk

≤ 2k

2k +1

since qk−1/qk ≤ (k −1)/k. Indeed, if n1 = ·· · = nk = 2, then qk−1/qk = (k −1)/k;
if some n j > 2, then qk−1/qk ≤ 1/2 from (2.2). This proves that for every k ≥ 1

I (m)
k+1 ≤

2k

2k +1
I (m)

k

so

l (I (m)
k ) ≤ 2 ·4 · · · (2k −2)

3 ·5 · · · (2k −1)
· l (I (m)

1 ) −→ 0 as k →∞.

Therefore, in all cases, l (I (m)
k ) → 0 as k →∞. Since Γ(m) ⊂ I (m)

k for every k ≥ 1,
the proposition follows.

REMARK 2.5. By a similar argument, the set

Γ(−m)
a,b = {

x = b0,n1,n2, . . .ea,b | nk ∈ {−m,−m −1}
}

has zero Lebesgue measure for every m ≥ 1.

3. ATTRACTOR SET FOR Fa,b

The reduction map Fa,b defined by (1.2) has a trapping domain, i.e., a closed
set Θa,b ⊂ R̄2 à∆ with the following properties:

(i) for every pair (x, y) ∈ R̄2 à∆, there exists a positive integer N such that
F N

a,b(x, y) ∈Θa,b ;
(ii) Fa,b(Θa,b) ⊂Θa,b .
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THEOREM 3.1. The region Θa,b consisting of two connected components (or one
if a = 0 or b = 0) defined as

Θu
a,b =


[−∞,−1]× [b −1,∞]∪ [−1,0]× [−1/a,∞] if b ≥ 1, a 6= 0,

; if a = 0,

[−∞,−1]× [b −1,∞]∪ [−1,0]× [min(− b
b−1 ,− 1

a ),∞]

∪ [0,1]× [− 1
b−1 ,∞]

if 0 < b < 1,

and

Θl
a,b =


[0,1]× [−∞,−1/b]∪ [1,∞]× [−∞, a +1] if a ≤−1,b 6= 0,

; if b = 0,
[−1,0]× [−∞,− 1

a+1 ]∪ [0,1]× [−∞,max( a
a+1 ,− 1

b )]

∪ [1,∞]× [−∞, a +1]
if a >−1,

is the trapping region for the reduction map Fa,b .
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FIGURE 2. Typical trapping regions: case a <−1, 0 < b < 1 (left);
case −1 < a < 0 < b < 1 (right)

Proof. The fact that the region Θa,b is Fa,b-invariant is verified by a direct cal-
culation. We focus our attention on the attracting property of Θa,b . Let (x, y) ∈
R2 à∆, write y = bn0,n1, . . .ea,b , and construct the following sequence of real
pairs {(xk , yk )} (k ≥ 0) defined by x0 = x, y0 = y , and

yk+1 = ST −nk · · ·ST −n1 ST −n0 y, xk+1 = ST −nk · · ·ST −n1 ST −n0 x.

If y is rational and its (a,b)-expansion terminates y = bn0,n1, . . . ,nl ea,b , then
yl+1 = ±∞, so (x, y) lands in Θa,b after finitely many iterations. If y has an
infinite (a,b)-expansion, then yk+1 = bnk+1,nk+2, . . .ea,b , and yk+1 ≥ −1/a or
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yk+1 ≤−1/b for k ≥ 0. Also,

y = T n0 ST n1 S · · ·T nk S(yk+1) = pk yk+1 −pk−1

qk yk+1 −qk−1

x = T n0 ST n1 S · · ·T nk S(xk+1) = pk xk+1 −pk−1

qk xk+1 −qk−1
.

Hence,

xk+1 =
qk−1x −pk−1

qk x −pk
= qk−1

qk
+ 1

q2
k (pk /qk −x)

= qk−1

qk
+εk .

Since pk /qk → y 6= x, and |qk |→∞, we obtain that |εk | < 1/qk for large enough
k. But one of the properties of the sequence {qk } is that |qk−1| < |qk | for large
enough k (see property (i) in the proof of Theorem 2.1 and Remark 2.2.) There-
fore,

|xk+1| ≤
|qk−1|
|qk |

+ 1

|qk |
≤ 1 for large enough k.

We proved that there exists N > 0, such that

F N
a,b(x, y) = ST −nk · · ·ST −n1 ST −n0 (x, y) ∈ [−1,1]× ([−1/a,∞]∪ [−∞,−1/b]).

The point F N
a,b(x, y) =: (x̃, ỹ) belongs to Θa,b , unless b < 1 and (x̃, ỹ) ∈ [0,1]×

[−1/a,−1/(b −1)] or a >−1 and (x̃, ỹ) ∈ [−1,0]× [−1/b,−1/(a +1)].
Let us study the next iterates of (x̃, ỹ) ∈ [0,1]× [−1/a,−1/(b −1)]. If ỹ ≥ b +1

then
F 2

a,b(x̃, ỹ) = (x̃ −2, ỹ −2) ∈ [−1,1]× [b −1,∞],

so F 2
a,b(x̃, ỹ) ∈Θa,b . If it so happens that −1/a ≤ ỹ < b +1, then

Fa,b(x̃, ỹ) = (x̃ −1, ỹ −1) ∈ [−1,0]× [0,b]

and
F 2

a,b(x̃, ỹ) = ST −1(x̃, ỹ) ∈ [0,∞]× [−1/b,∞] ⊂Θa,b .

Similarly, if (x, y) ∈ [−1,0]× [−1/b,−1/(a +1)], then F 2
a,b(x, y) ∈Θa,b .

Notice that if a = 0, then yk+1 ≤−1/b for all k ≥ 0 (so Θu
a,b =;) and if b = 0,

then yk+1 ≥−1/a for all k ≥ 0 (so Θl
a,b =;).

Using the trapping region described in Theorem 3.1 we define the associated
attractor set

(3.1) Da,b =
∞⋂

n=0
Dn ,

where Dn =⋂n
i=0 F i

a,b(Θa,b).

REMARK 3.2. In the particular cases when a = 0 and b ≥ 1, or b = 0 and a ≤−1,
or (a,b) = (−1,1), the trapping regions

Θ0,b = [−1,0]× [−∞,−1]∪ [0,1]× [−∞,0]∪ [1,∞]× [−∞,1]

Θa,0 = [−∞,−1]× [−1,∞]∪ [−1,0]× [0,∞]∪ [0,1]× [1,∞]

Θ−1,1 = [−∞,−1]× [−1,∞]∪ [−1,0]× [1,∞]∪ [0,1]× [−∞,−1]∪ [1,∞]× [−∞,0]
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are also bijectivity domains for the corresponding maps Fa,b . Therefore, in
these cases the attractor Da,b coincides with the trapping region Θa,b , so the
properties mentioned in the introduction are obviously satisfied. In what fol-
lows, all our considerations will exclude these degenerate cases.

4. CYCLE PROPERTY

In what follows, we simplify the notations for fa,b , b·ea,b , f̂a,b and Fa,b to f ,
b·e, f̂ and F , respectively, assuming implicitly their dependence on parameters
a,b. We will use the notation f n (or f̂ n) for the n-times composition opera-
tion of f (or f̂ ). Also, for a given point x ∈ (a,b) the notation f̂ (k) means the
transformation of type T i S (i is an integer) such that

f̂ k (x) = f̂ (k) f̂ (k−1) · · · f̂ (2) f̂ (1)(x),

where f̂ (1)(x) = f̂ (x).
The map f is discontinuous at x = a, b. However, we can associate to each

a and b two forward orbits: to a we associate the upper orbit Ou(a) = { f n(Sa)},
and the lower orbit O`(a) = { f n(Ta)}; to b the lower orbit O`(b) = { f n(Sb)} and
the upper orbit Ou(b) = { f n(T −1b)}. We use the convention that if an orbit hits
one of the discontinuity points a or b, then the next iterate is computed ac-
cording to the lower or upper location. For example, if the lower orbit of b hits
a, then the next iterate is Ta, if the upper orbit of b hits a then the next iterate
is Sa.

Now we explore the patterns in the above orbits. The following property
plays an essential role in studying the map f .

DEFINITION 4.1. We say that the point a has the cycle property2 if for some
nonnegative integers m1 and k1,

f m1 (Sa) = f k1 (Ta) = ca .

We will refer to the set {Ta, f Ta, . . . , f k1−1Ta} as the lower side of the a-cycle, to
the set {Sa, f Sa, . . . , f m1−1Sa} as the upper side of the a-cycle, and to ca as the
end of the a-cycle. If the transformations f k1 T and f m1 S at the end of each side
of the a-cycle are equal, we say that a has the strong cycle property. Otherwise,
we say that a has the weak cycle property.

Similarly, we say that b has the cycle property if for some nonnegative inte-
gers m2 and k2,

f k2 (Sb) = f m2 (T −1b) = cb .

We will refer to the set {Sb, f Sb, . . . , f k2−1Sb} as the lower side of the b-cycle, to
the set {T −1b, f T −1b, . . . , f m2−1T −1b} as the upper side of the b-cycle, and to cb

as the end of the b-cycle. If the transformations f k2 T and f m2 S at the end of
each side of the b-cycle are equal, we say that b has the strong cycle property.
Otherwise, we say that b has the weak cycle property.

2A similar “matching” condition is used by the authors of [5, 20] to study the measure-
theoretic entropy of α-transformations.
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It turns out that the cycle property is the prevalent pattern. It can be an-
alyzed and described explicitly by partitioning the parameter set P based on
the first digits of Sb, STa, and Sa, ST −1b, respectively. Figure 3 shows a part of
the countable partitions, with B−1,B−2, . . . denoting the regions where Sb has
the first digit −1,−2, . . . , and A1, A2, . . . , denoting the regions where Sa has the
first digit 1,2, . . . . For most of the parameter region, the cycles are short: every-
where except for the narrow triangular regions shown in Figure 3 the cycles for
both a and b end after the first return to [a,b). However, there are Cantor-like
recursive sets where the lengths of the cycles can be arbitrarily long. Part of this
more complex structure, studied in details in Section 8, can be seen as narrow
triangular regions close to the boundary segment b −a = 1.

-2 -1

1

2

0
a

b

B
−1

B
−2

A1 A2

.

.

.

. . .

FIGURE 3. The parameter set P and its partition

By symmetry of the parameter set P with respect to the line b =−a, (a,b) 7→
(−b,−a), we may assume that b ≤ −a and concentrate our attention to this
subset of P .

The structure of the set where the cycle property holds for b is described
next for the part of the parameter region with 0 < b ≤ −a < 1. We make use
extensively of the first-return map f̂ .

THEOREM 4.2. Let (a,b) ∈P , 0 < b ≤−a < 1, and m ≥ 1 with a ≤ T mSb < a +1.

(I) Suppose that there exists n ≥ 0 such that

f̂ k T mSb ∈
( b

b +1
, a +1

)
for k < n, and f̂ nT mSb ∈

[
a,

b

b +1

]
.
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(i) If f̂ nT mSb ∈ (a, b/(b + 1)), then b has the cycle property; the cycle
property is strong if and only if f̂ nT mSb 6= 0.

(ii) If f̂ nT mSb = a, then b has the cycle property if and only if a has the
cycle property.

(iii) If f̂ nT mSb = b/(b +1), then b does not have the cycle property, but
the orbits of Sb and T −1b are periodic.

(II) If f̂ k T mSb ∈ (b/(b +1), a +1) for all k ≥ 0, then b does not have the cycle
property.

Proof. (I). In the case m = 1, and assuming a < T Sb < a +1 we have

(4.1) a < 1− 1

b
< b

b +1
,

and the cycle relation for b can be explicitly described as

(4.2)

b −1
S- − 1

b −1

b

T −1 -

cb = b

1−b

T −1-

− 1

b
T-

S-

b −1

b

S-

In the particular situation that T Sb = a, the lower orbit of b hits a and contin-
ues to a + 1, while the upper orbit hits b/(1−b) = −1/a. This means that the
iterates will follow the lower and upper orbits of a, respectively, thus statement
(ii) holds. Since the second inequality (4.1) is strict, the case (iii) cannot occur.

For the case m = 2 (and assuming T 2Sb 6= a), we analyze the following situa-
tions: if b < 1/2, then 2−1/b < 0, and the cycle relation is

(4.3)

b −1
S- − 1

b −1
ST −2
- 1+ b

1−2b

b

T −1 -

cb = b

1−2b

T −1
-

− 1

b
T 2
-

S-

−1−2b

b

S

-
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If b > 1/2 we have 0 < 2−1/b ≤ b/(b+1), since we must also have 2−1/b < a+1,
i.e., b ≤ 1/(1−a), and the cycle relation is

b −1
S- − 1

b −1

b

T −1 -

cb = 1+ b

1−2b

ST −2

-

− 1

b
T 2
-

S-

−1−2b

b
S- b

1−2b

T
-

The above cycles are strong. If b = 1/2 the cycle relation is

b −1
S- − 1

b −1

b

T −1 -

cb =−1−2b

b
= 0

T −2
-

− 1

b

T 2
-

S-

It is easy to check that this cycle is weak. In the particular situation when
T 2Sb = a, the lower orbit of b hits a, and continues with a +1, while the up-
per orbit still hits b/(1−2b) =−1/a. This means that the iterates will follow the
lower and upper orbits of a, respectively, and statement (ii) holds. The relation

2−1/b = b/(b +1) implies b = −1+
p

5
2 that does not have the cycle property and

the orbits of Sb and T −1b are periodic; this is the only possibility for (iii) to
hold.

The situation for m ≥ 3 is more intricate. First we will need the following
lemmas.

LEMMA 4.3. Suppose ST Sx = y. Then each of the following are true.

(a) If T Sb ≤ x < a, then b −1 ≤ y < a/(1−a).
(b) If a ≤ x < b/(b +1), then a/(1−a) ≤ y < b.
(c) If b/(b +1) ≤ x < a +1, then b ≤ y < a/(1−a)+1.
(d) If x = 0, then y = 0.

Proof. Applying ST S to the corresponding inequalities, we obtain

b −1 = ST ST Sb ≤ y < ST Sa = a

1−a
(a)

a

1−a
= ST Sa ≤ y < ST ST ST b = b(b)

b = ST ST ST b ≤ y < ST STa = T −1Sa ≤ 1

1−a
= a

1−a
+1,(c)
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where the last inequality is valid for a ≤ 1−
p

5
2 , which is true in the considered

region b ≤ 1/(2−a). Relation (d) is obvious.

LEMMA 4.4. Suppose that for all k < n

(4.4)
b

b +1
< f̂ k T mSb < a +1.

Then

(i) for 0 ≤ k ≤ n, in the lower orbit of b, f̂ (k) = T mS or T m+1S; in the upper
orbit of b, f̂ (k) = T −i S with i = 2 or 3;

(ii) there exists p > 1 such that

(4.5) (ST S) f̂ nT mS = (T −2S) f̂ p T −1.

Proof. (i). Applying T mS to the inequality (4.4), we obtain

a −1 ≤ T m−1Sb = T mST ST b < T mS f̂ k T mSb ≤ T mSTa ≤ T mSb < a +1.

Therefore f̂ (k+1) = T mS or T m+1S. Since f̂ (0) = T mS, we conclude that f̂ (k) =
T mS or T m+1S for 0 ≤ k ≤ n.

(ii). In order to determine the upper side of the b-cycle, we will use the
following relation in the group SL(2,Z) obtained by concatenation of the “stan-
dard” relations (from right to left)

(4.6) (ST S)T i S = (T −2S)i−1T −1 (i ≥ 1),

and Lemma 4.3 repeatedly. The proof is by induction on n. For the base case
n = 1, we have

b

b +1
< T mSb < a +1.

Then for 1 ≤ i ≤ m −1, T i Sb satisfies Lemma 4.3(a). Hence

b −1 < (T −2S)i−2T −1b < a

1−a
,

which means that on the upper side of the b-cycle f̂ (1) = T −1 and f̂ (i ) = T −2S
for 1 < i ≤ m −1. Using (4.6) for i = m, we obtain

(ST S)T mS = (T −2S)m−1T −1 = (T −2S) f̂ m−2T −1.

In other words, (4.5) holds with p = m −2. Now suppose the statement holds
for n = n0, and for all k < n0 +1 we have

b

b +1
< f̂ k T mSb < a +1.

By the induction hypothesis, there exists p0 > 1 such that

(4.7) (ST S) f̂ n0 T mS = (T −2S) f̂ p0 T −1.

But since
b

b +1
< f̂ n0 T mSb < a +1,

the condition of Lemma 4.3(c) is satisfied. Hence,

b < (T −2S) f̂ p0 T −1b < a

1−a
+1,

JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 4 (2010), 637–691



652 SVETLANA KATOK AND ILIE UGARCOVICI

which is equivalent to

b −1 < (T −3S) f̂ p0 T −1b < a

1−a
,

i.e., f̂ (p0+1) = T −3S. Using the relation (ST S)T 2S = T −1(ST S), we can rewrite
equation (4.7) as

(4.8) (ST S)T 2S f̂ n0 T mS = (T −3S) f̂ p0 T −1 = f̂ p0+1T −1.

Let f̂ (n0+1) = T q S. We have proved in (i) that q = m or m +1, hence q ≥ 3. Let

b0 = T 2S f̂ n0 T mSb and c0 = (T −3S) f̂ p0 T −1b.

Then (ST S)b0 = c0 by (4.8). Using the relation (ST S)T = T −2S(ST S), we obtain
(ST S)T i = (T −2S)i (ST S), and therefore,

(4.9) (ST S)T i b0 = (T −2S)i (ST S)b0 = (T −2S)i c0.

Since, for 0 ≤ i < q −2, T i b0 satisfies condition (a) of Lemma 4.3, we conclude
that

b −1 < (T −2S)i c0 <
a

1−a
.

Therefore f̂ (i ) = T −2S and (4.9) for i = q −2 give us the desired relation

(ST S) f̂ n0+1T mS = (T −2S) f̂ p0+q T −1

with p = p0 +q .

Now we complete the proof of part (I) of Theorem 4.2. In what follows we
introduce the notations

I` =
(
a,

b

b +1

)
and Iu =

( a

1−a
,b

)
and write I`, I u for the corresponding closed intervals. If f̂ nT mSb ∈ I`, then
condition (b) of Lemma 4.3 is satisfied, and (T −2S) f̂ p T −1b ∈ Iu . It follows that
f̂ (p+1) = T −2S. Therefore (4.5) can be rewritten as (ST S) f̂ nT mS = f̂ p+1T −1,
which means that we reached the end of the cycle. More precisely,

(i) If f̂ nT mSb ∈ (0,b/(b +1)), then f̂ p T −1b ∈ (0,b),

T S f̂ nT mSb = S f̂ p T −1b = cb , and b −1 < f̂ j T −1b < a

1−a
,

for j < p. In this case, cb < Sb.
If f̂ nT mSb ∈ (a,0), then f̂ p T −1b ∈ (a/(1−a), 0),

S f̂ nT mSb = T −1S f̂ p T −1b = cb , and b −1 < f̂ j T −1b < a

1−a
,

for j < p. In this case, cb > Sa. Since the cycle relation in both cases
is equivalent to the identity (4.5), the cycle property is strong, and (i) is
proved.

If f̂ nT mSb = 0, then f̂ nT mSb = f̂ p T −1b = 0 is the end of the cycle and
b − 1 < f̂ j T −1b < a

1−a for j < p. In this case the cycle ends “before” the
identity (4.5) is complete, therefore the product over the cycle is not equal
to identity, and the cycle is weak.
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(ii) If f̂ nT mSb = a, then following the argument in (i) and using relation (4.5)
we obtain that the upper orbit of b hits T −1S f̂ p T −1b = S f̂ nT mSb = Sa =
−1/a, while the lower orbit hits the value a+1, hence b satisfies the cycle
property if and only if a does.

(iii) If f̂ nT mSb = b/(b +1), then following the argument in (i), we obtain that
(T −2S) f̂ p T −1b = b. However, one needs to apply one more T −1 to follow
the definition of the map f , hence f̂ (p+1) = T −3S, not T −2S, and the cycle
will not close. One also observes that in this case the (a,b)-expansions of
Sb and T −1b will be periodic, and therefore the cycle will never close.

We prove now part (II). If f̂ k T mSb ∉ I` for all k ≥ 0, by the argument in the
part (I) of the proof, on the lower orbit of b each f̂ (k) = T q S, where q = m or
m +1, and on the upper orbit of b each f̂ (p) = T −r S, where r = 2 or 3, and for
all p ≥ 1, f̂ p T −1b ∉ Iu . This means that for all images under the original map f
on the lower orbit of b we have

f k Sb ∈
(
−1− 1

b
, a

)
∪

( b

b +1
, a +1

)
while for the images on the upper orbit of b

f k T −1b ∈
(
b −1,

a

1−a

)
∪

(
b,1− 1

a

)
.

Since these ranges do not overlap, the cycle cannot close, and b has no cycle
property.

A similar result holds for the a-cycles. First, if Sa has the first digit 1, i.e.,
b ≤ Sa < b +1, then one can easily write the a-cycle, similarly to (4.1). For the
rest of the parameter region we have the following.

THEOREM 4.5. Let (a,b) ∈P , 0 < b ≤−a < 1 with Sa ≥ b+1 and m ≥ 1 such that
a ≤ T mSTa < a +1.

(I) Suppose that there exists n ≥ 0 such that

f̂ k T mSTa ∈
( b

b +1
, a +1

)
for k < n, and f̂ nT mSTa ∈

[
a,

b

b +1

]
.

(i) If f̂ nT mSTa ∈ (a, b/(b +1)), then a has the cycle property; the cycle
property is strong if and only if f̂ nT mSTa 6= 0.

(ii) If f̂ nT mSTa = b/(b +1), then a has the cycle property if and only if
b has the cycle property.

(iii) If f̂ nT mSTa = a, then a does not have the cycle property, but the
(a,b)-expansions of Sa and Ta are eventually periodic.

(II) If f̂ k T mSTa ∈ (b/(b+1), a+1) for all k ≥ 0, then a does not have the cycle
property.

Proof. The proof follows the proof of Theorem 4.2 with minimal modifications.
In particular, the relation (4.5) should be replaced by relation

(4.10) (ST S) f̂ nT mST = (T −2S) f̂ p .
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For (ii), since f̂ nT mSTa = b
b+1 , on the lower side we have T S f nT mSTa = Sb,

and on the upper side, using (4.10), (T −2S) f̂ p b = b. As in the proof of Theorem
4.2, f̂ p+1 = T −3S, so (T −3S) f̂ p b = T −1b. Therefore a has (strong or weak) cycle
property if and only if b does.

Let us now describe the situation when a ≤−1.

THEOREM 4.6. Let (a,b) ∈P with 0 < b ≤−a and a ≤−1. Then a and b satisfy
the cycle property.

Proof. It is easy to see that a =−1 has the degenerate weak cycle:

(4.11)

1

a =−1
T -

S -

0

T −1

-

while a <−1 satisfies the following strong cycle relation:

(4.12)

− 1

a
T −1
- − 1

a
−1

S- a

a +1

a

S -

ca =− 1

a +1

T −1-

a +1

S
-

T
-

In order to study the orbits of b, let m ≥ 0 such that a ≤ T mSb < a +1. If m = 0,
then Sb = a (since Sb ≤ a), and the cycle of b is identical to the one described
by (4.11). If m ≥ 1, then one can use relation (4.6) to construct the b-cycle.
More precisely, if a < T mSb < a +1, then we have:

b −1
S- − 1

b −1
(ST −2)m−1

- 1+ b

1−mb

b

T −1 -

cb = b

1−mb

T −1
-

− 1

b
T m
-

S-

−1−mb

b

S

-

If T mSb = a, then it happens again that the lower orbit of b hits a, and then Ta,
while the upper orbit hits Sa. Following now the cycle of a described by (4.12),
we conclude that b satisfies the strong cycle property.
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If T mSb = 0, i.e., b = 1/m, then a minor modification of the above b-cycle
gives us the following weak cycle relation:

b −1
S- − 1

b −1
T −1(ST −2)m−2

- b

1−mb +b
= 1

b

T −1

-

cb = 0

T −1 -

− 1

b
=−m

T m−1
-

S-

−1

T

-

The following corollaries are immediate from the proof of Theorems 4.2, 4.5,
and 4.6.

COROLLARY 4.7. If b has the cycle property, then the upper side of the b-cycle

{T −1b, f T −1b, . . . , f m2−1T −1b}

and the lower side of the b-cycle

{Sb, f Sb, . . . , f k2−1Sb}

do not have repeating values.

COROLLARY 4.8. If a has the cycle property, then the upper side of the a-cycle

{Sa, f Sa, . . . , f m1−1Sa}

and the lower side of the a-cycle

{Ta, f Ta, . . . , f k1−1Ta}

do not have repeating values.

5. FINITENESS CONDITION IMPLIES FINITE RECTANGULAR STRUCTURE

In order to state the condition under which the natural extension map Fa,b

has an attractor with finite rectangular structure mentioned in the Introduc-
tion, we follow the split orbits of a and b, and define the truncated orbits La

and Ua by

La =


O`(Ta) if a has no cycle property,

lower part of a-cycle if a has strong cycle property,

lower part of a-cycle∪ {0} if a has weak cycle property,

Ua =


Ou(Sa) if a has no cycle property,

upper part of a-cycle if a has strong cycle property,

lower part of a-cycle∪ {0} if a has weak cycle property.
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Similarly, Lb and Ub are defined by

Lb =


O`(Sb) if b has no cycle property,

lower part of b-cycle if b has strong cycle property,

lower part of b-cycle∪ {0} if b has weak cycle property,

Ub =


Ou(T −1b) if b has no cycle property,

upper part of b-cycle if b has strong cycle property,

lower part of b-cycle∪ {0} if b has weak cycle property.

We find it useful to introduce the map ρa,b : R̄→ {T,S,T −1}

ρa,b(x) =


T if x < a

S if a ≤ x < b

T −1 if x ≥ b

in order to write fa,b(x) = ρa,b(x)x and Fa,b(x, y) = (ρ(y)x,ρ(y)y).

REMARK 5.1. It follows from the above definitions that ρ(y) = S or T if y ∈La ∪
Lb , and ρ(y) = S or T −1 if y ∈Ua ∪Ub .

DEFINITION 5.2. We say that the map fa,b satisfies the finiteness condition if
the sets of values in all four truncated orbits La , Lb , Ua , and Ub are finite.

PROPOSITION 5.3. The following statements are equivalent.

(1) The set Lb is finite.
(2) The set Ub is finite.
(3) Either b has the cycle property, or the upper and lower orbits of b are even-

tually periodic.

Similar statements hold for the sets La and Ua .

Proof. The two properties follow from Theorem 4.2 and its proof. If b does not
have the cycle property, but its lower orbit is eventually periodic, then one uses
the argument in Lemma 4.4 to conclude that the upper orbit of b has to be
eventually periodic.

REMARK 5.4. If b has the strong cycle property, then the set Lb coincides with
the lower side of the b-cycle and Ub coincides with the upper side of the b-
cycle. If b does not have the cycle property, but the lower and upper orbits
of b are eventually periodic then Lb and Ub are identified with these orbits
accordingly, until the first repeat.

THEOREM 5.5. Let (a,b) ∈ P , a 6= 0, b 6= 0, and assume that the map fa,b satis-
fies the finiteness condition. Then there exists a set Aa,b á R̄2 with the following
properties.

(i) The set Aa,b consists of two connected components each having finite rect-
angular structure, i.e., bounded by nondecreasing step-functions with a fi-
nite number of steps.
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(ii) Fa,b : Aa,b → Aa,b is a bijection except for some images of the boundary of
Aa,b .

Proof. We construct a set Aa,b whose upper connected component is bounded
by a step-function with values in the set Ua,b = Ua ∪Ub that we refer to as
upper levels, and whose lower connected component is bounded by a step-
function with values in the set La,b = La ∪Lb that we refer to as lower lev-
els. Notice that each level in Ua and Ub appears exactly once, but if the same
level appears in both sets, we have to count it twice in Ua,b . The same remark
applies to the lower levels.

Now let y` ∈ La,b be the closest y-level to Sb with y` ≥ Sb, and yu ∈ Ua,b

be the closest y-level to Sa with yu ≤ Sa. Since each level in Ua and in Lb

appears only once, if yu = Sa, yu can only belong to Ub , and if y` = Sb, y` can
only belong to La .

We consider the rays [−∞, xb]×{b} and [xa ,∞]×{a}, where xa and xb are un-
known, and “transport” them (using the special form of the natural extension
map Fa,b) along the sets Lb , Ub , La , and Ua , respectively, until we reach the
levels yu and y` (see Figure 4). Now we set-up a system of two fractional linear
equations by equating the right end of the segment at the level Sb with the left
end of the segment at the level y`, and, similarly, the left end of the segment at
the level Sa and the right end of the level yu .

STa

ST−1bSa

Sb

yu

y`

xb xa

a

b

FIGURE 4. Construction of the domain Aa,b

In what follows, we present the proof assuming that 0 < b ≤ −a < 1. The
situation a ≤−1 is less complex due to the explicit cycle expressions described
in Theorem 4.6 and will be discussed at the end of this section.
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LEMMA 5.6. The system of two equations at the consecutive levels yu and Sa,
and y` and Sb, has a unique solution with xa ≥ 1 and xb ≤−1.

Proof. Let ma ,mb be positive integers such that a ≤ T ma STa < a + 1 and a ≤
T mb Sb < a +1. For the general argument we assume that ma ,mb ≥ 3, the cases
ma or mb ∈ {1,2} being considered separately. The level yu may belong to Ua

or Ub , and the level y` may belong to La or Lb , therefore we need to consider
the following four possibilities.

Case 1 : yu ∈Ua , y` ∈La . Then we have

Sxa = T −1S f̂ n1− (∞) and Sxb = T S f̂ n2
+ T xa ,

where f̂ n1− is a product of factors T −i S (that appear on the upper orbit of a)
with i = 2 or 3, and f̂ n2

+ is a product of factors T i S (that appear on the lower
orbit of a) with i = m or m +1. Using (4.10), we rewrite the first equation as

xa = ST −1S f̂ n1− (∞) = ST −1SST 2ST S f̂ k1
+ T mST (∞) = T −1 f̂ k1

+ T mST (∞).

Since f̂ k1
+ is a product of factors T i S with i = m or m +1, m ≥ 3, we conclude

that T xa has a finite formal continued fraction expansion starting with m′ ≥ 3,
i.e., T xa > 2, and xa > 1. Furthermore, it follows from the second equation
that xb = ST S f̂ n2

+ T xa . Hence f̂ n2
+ T xa has a finite formal continued fraction

expansion starting with m′ ≥ 3, i.e., f̂ n2
+ T xa > 2, and xb <−2.

Case 2 : yu ∈Ua , y` ∈Lb . Then

Sxa = T −1S f̂ n1− (∞) and Sxb = T S f̂ n2
+ (−∞).

Like in Case 1 we see that xa > 1, and xb = ST S f̂ n2
+ (−∞) < −2, since f̂ n2

+ (−∞)
has a formal continued fraction expansion starting with m′ ≥ 3, and therefore
is > 2.

Case 3 : yu ∈Ub , y` ∈La . Then

Sxa = T −1S f̂ n1− T −1xb and Sxb = T S f̂ n2
+ T xa .

Using (4.5),

xa = ST −1S f̂ n1− T −1xb = ST −1SST 2ST S f̂ k2 T mSxb ,

and using the second equation and simplifying, we obtain

T xa = f̂ k2 T mSST S f̂ n2
+ (T xa) = f̂ k2 T m+1S f̂ n2

+ (T xa).

Since all its factors are of the form T i S with i ≥ 3, the matrix f̂ k2 T m+1S f̂ n2
+ is hy-

perbolic and its attracting fixed point T xa has periodic formal continued frac-
tion expansion starting with m′ ≥ 3 (see Proposition 1.3 of [11]), hence xa > 1.
Finally, as in Case 1, xb = ST S f̂ n2

+ T xa <−2, since f̂ n2
+ T xa has formal continued

fraction expansion starting with m′ ≥ 3, hence > 2.
Case 4 : yu ∈Ub , y` ∈Lb . Then

Sxa = T −1S f̂ n1− T −1xb and Sxb = T S f̂ n2
+ S(−∞).
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From the second equation we obtain xb = ST S f̂ n2
+ S(−∞) <−2 since f̂ n2

+ S(−∞)
has formal continued fraction expansion starting with m′ ≥ 3, hence > 2. Fi-
nally,

xa = ST −1S f̂ n1− T −1xb = T −1 f̂ k2 T m+1S f̂ n2
+ S(−∞).

Hence T xa = f̂ k2 T m+1S f̂ n2
+ S(−∞) > 2 since it has formal continued fraction ex-

pansion starting with m′ ≥ 3, therefore xa > 1.
Now we analyze the particular situations when ma or mb ∈ {1,2}, using the

explicit cycle descriptions that exist for these situations as described by Theo-
rems 4.2 and 4.5.

(i) If ma = mb = 1, then relation (4.2) for the b-cycle and a similar one for
the a-cycle shows that y` = − 1

b +1 and yu = − 1
a −1, therefore xa = 1 and

xb =−1.
(ii) If ma = 1, mb = 2, following the explicit cycles given by (4.3) we obtain

y` =−1/b +1, and yu =−1/(b −1)−1, therefore xa = 2, xb =−1.
(iii) If ma = 1, mb ≥ 3, using the cycle structure in Theorem 4.2 we obtain y` =

1/b +1 and yu = T −1(ST −2)mb−2ST −1b, therefore, xa = mb , and xb =−1.
(iv) If ma = 2, mb = 2, using the cycle structure in Theorems 4.2 and 4.5 we

obtain y` =− 1
a+1 +1 and yu =− 1

b−1 −1, and a calculation in this particular
case, like in Lemma 5.6, Case 3 implies that xa > 1 and xb <−1.

(v) If ma = 2, mb > 2, an analysis of the four cases above for this particular
situation (with an explicit cycle relation for a) yields xa ≥ 1 and xb ≤ −1.
Indeed, in Case 1, we have yu = −1/a − 1, hence xa = 1 and xb = −2. In
Case 2, we get xa = 1 and xb <−2. Cases 3 and 4 are treated similarly.

Now, since xa and xb are uniquely determined, by “transporting” the rays
[−∞, xb]× {b} and [xa ,∞]× {a} along the sets Lb , Ub , La , and Ua , we obtain
the x-coordinates of the right and left end of the segments on each level.

DEFINITION 5.7. We say that two consecutive levels y1 ≤ y2 of La,b , respec-
tively, Ua,b , are connected by a vertical segment (we will refer to this as con-
nected) if the x-coordinate of the right end-point of the horizontal segment on
the level y1 is equal to the the x-coordinate of the left end-point of the hori-
zontal segment on the level y2.

In order to prove part (i) of Theorem 5.5, we show that all levels of La,b and
all levels of Ua,b are connected. We first look at the levels in La,b . By Lemma
5.6 the levels yu and Sa, and the levels Sb and y` are connected.

LEMMA 5.8. The levels Sb ∈Lb and STa ∈La are two consecutive levels of La,b

connected by a vertical segment at x = 0. The levels Sa ∈Ua and ST −1b ∈Ub are
two consecutive levels of Ua,b connected by a vertical segment at x = 0.

Proof. Suppose there is y ∈ La,b such that STa ≤ y ≤ Sb. Then y ∈ La or Lb .
In either case, since by Lemmas 4.8 and 4.7 the truncated orbits La ,Lb do
not have repeated values, neither STa = y nor y = Sb is possible. Thus the
only case we need to consider is STa < y < Sb. Then, either y = Sy ′ for some
y ′ ∈ La,b (0 < y ′ ≤ a + 1) or y = T y ′′ for some y ′′ ∈ La,b . These would imply
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that either y ′ > Ta, which is impossible, or T y ′′ < Sb, i.e., y ′′ < T −1Sb, which
is also impossible (if y ′′ < T −1Sb then y = T y ′′ must be the end of the a-cycle,
by Theorem 4.5). The x-coordinate of the right end-point of the segment at the
level STa and of the left end-point of the segment at the level Sb is equal to 0.
The second part of the proof is similar.

The following proposition will be used later in the proof.

PROPOSITION 5.9. Suppose that the set La,b is finite and y ∈La,b with y > STa.

(1) If y ∈ La , then there exists n0 > 0 such that ρ( f n y) = ρ( f nSTa) for all 0 <
n < n0 and ρ( f n0 y) 6= ρ( f n0 STa), or f n0 y = 0.

(2) If y ∈ Lb , then y > Sb and there exists n0 > 0 such that ρ( f n y) = ρ( f nSb)
for all n < n0 and ρ( f n0 y) 6= ρ( f n0 Sb), or f n0 y = 0.

Proof. Suppose that y ∈ La and a satisfies the cycle property. It follows that
such an n0 exists or f n0 y is the end of the a-cycle. We will show that the latter
is possible only if f n0 y = 0, i.e., it is the end of a weak cycle. Suppose f n0 y is
the end of the a-cycle. Then if

ρ( f n0−1 y) = ρ( f n0−1STa) = S,

we must have f n0−1 y < 0 since otherwise the cycle would not stop at S, but
f n0−1(STa) > 0 since for STa we have not reached the end of the cycle. This
contradicts the monotonicity of f n0−1 and the original assumption y > STa,
thus is impossible. The other possibility is

ρ( f n0−1 y) = ρ( f n0−1STa) = T.

But this either implies that f n0−1 y < T −1Sb, and by monotonicity of f n0−1,
f n0−1(STa) < f n0−1 y < T −1Sb, which implies that we have reached the end of
the cycle of STa as well, a contradiction, or, f n0 y = 0, i.e., it is the end of a weak
cycle.

Now suppose y ∈ Lb . Then by Lemma 5.8 y ≥ Sb, but since each level in
Lb appears only once, we must have but y > Sb. Now the argument that f n0 y
cannot be the end of the b-cycle is exactly the same as for the a-cycle.

In the periodic case, assume that no such n0 exists. Then, in case (1), the
(a,b)-expansions of STa and y , which is the lower part of the former, are the
same, i.e., (a,b)-expansions of STa is invariant under a left shift. In case (2), we
have seen already that we must have y > Sb. Then the (a,b)-expansions of Sb
and y , which is the lower part of the former, are the same, i.e., (a,b)-expansions
of Sb is invariant under a left shift. The proof that this is impossible is based
on the following simple observation: if σ = (a1, a2, . . . , ak , ak+1, ak+2, . . . , ak+n)
is an eventually periodic symbolic sequence with the minimal period n and
invariant under a left shift by m, then σ is purely periodic and m is a multiple
of n. By the uniqueness property of (a,b)-expansions, this would imply that
y = STa or y = Sb, a contradiction.

Let y−
b , y+

b ∈ Ua,b be two consecutive levels with y−
b ≤ b < y+

b , and y−
a , y+

a ∈
La,b be two consecutive levels with y−

a < a ≤ y+
a .
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LEMMA 5.10. There is always one level connected with level a+1, and the levels
y−

a and y+
a are connected by the vertical segment at xa .

Proof. By Lemmas 5.6 and 5.8, we know that three consecutive levels STa ≤
Sb ≤ y` are connected. Moreover, their images remain connected under the
same transformations in SL(2,Z). Since each level in Ua and in La appears
only once, at least one of the two inequalities must be strict, i.e., if STa = Sb,
then STa = Sb < y`, and if Sb = y`, then STa < Sb = y`.

First we prove that y` < T Sb. Suppose y` ≥ T Sb. Its preimage must be y ′
`
=

T −1 y` since for any y , 0 < y < Ta, Sy < STa ≤ Sb < T Sb, and we would have
Sb ≤ y ′

`
< y` that contradicts the assumption that y` is the next level above Sb.

Therefore, if the first digit in the (a,b)-expansion of Sb is −m, then the first
digit of y` is −(m −1) or −m. In the first case, the three levels

T m−1Sb < a ≤ T m−1 y`

are connected and satisfy T m−1Sb = y−
a , T m−1 y` = y+

a . Therefore, the levels
T mSb and a +1 are connected.

For the second case, we know that Sb ≤ y` and

a ≤ T mSb ≤ T m y` < a +1.

If Sb = y`, then y` ∈La , and STa < y`. If Sb < y`, then y` ∈Lb , or y` ∈La and
STa < y`.

Let us assume that y` belongs to La . Since STa < y`, by Proposition 5.9,
there are two possibilities:

(1) f n0 y` is the end of a weak cycle.
(2) There exists n0 such that ρ( f n y`) = ρ( f nSTa) for all n < n0, and ρ( f n0 y`) 6=

ρ( f n0 STa).

In the first case, we have f n0 STa = y−
a and f n0 Sb = y+

a , or f n0 Sb = y−
a and

f n0 y` = y+
a . Therefore, either f n0+1STa or f n0+1Sb is connected with level a+1.

In the second case, we notice that

ρ( f n0−1 y`) = ρ( f n0−1STa) = T

otherwise, ρ( f n0−1 y`) = ρ( f n0−1STa) = S would imply

ρ( f n0 y`) = ρ( f n0 STa) = T

in contradiction with the choice of n0. Further, there are two possibilities:

(i) ρ( f n0 STa) = S, ρ( f n0 y`) = T ;
(ii) ρ( f n0 STa) = T , ρ( f n0 y`) = S.

In case (i) we obtain

f n0 y` < a ≤ f n0 STa

which contradicts the monotonicity of f and the original assumption y` > STa.
Thus the only possibility is

f n0 y` ≥ a > f n0 STa.
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By using the monotonicity of f n0 we have

f n0 y` > f n0 Sb > f n0 STa

and conclude that f n0 STa = y−
a and f n0 Sb = y+

a , or f n0 Sb = y−
a and f n0 y` = y+

a .
Therefore, either f n0+1STa or f n0+1Sb is connected with level a +1. The case
when y` belongs to Lb is similar, and in this case f n0 Sb = y−

a , f n0 y` = y+
a , and

f n0+1Sb is connected with a +1. By construction, in both cases the common
x-coordinate of the end-points is equal to xa .

After an application of S the level connected with a + 1 will be connected
with STa, and now, instead of 3 connected levels STa ≤ Sb ≤ y` (with at least
one strict inequality) we have at least 4 connected levels y ′ ≤ STa ≤ Sb ≤ y`
(with no more than two equalities in a row).

The process continues with a growing number of connected levels, the high-
est being a+1. Since on each step we cannot have more than two equalities in a
row, the number of distinct levels in this sequence will also increase. Therefore,
we obtain a sequence of connected levels

(5.1) a +1 ≥ y1 ≥ ·· · ≥ ys >
b

b +1
≥ ys+1.

It is evident from the construction that there are no unaccounted levels y ∈
La,b , a +1 ≥ y ≥ ys+1.

Now we prove a similar result for Ua,b .

LEMMA 5.11. There is always one level connected with level b −1, and the levels
y−

b and y+
b are connected by a vertical segment at xb .

Proof. By Lemmas 5.6 and 5.8, we know that the three consecutive levels yu ≤
Sa ≤ ST −1b are connected. It is easy to see that the first digit in (a,b)-expansion
of ST −1b is 2, and the first digit in (a,b)-expansion of Sa is either 1 or 2. There-
fore, the first digit in (a,b)-expansion of yu is either 1 or 2. In the first case,
either

T −1Sa < b ≤ T −1ST −1b or T −1 yu < b ≤ T −1Sa

are the connected levels. Therefore either T −1Sa = y−
b and T −1ST −1b = y+

b , or
T −1 yu = y−

b and T −1Sa = y+
b are connected. So either T −2ST −1b or T −2Sa is

connected with level b −1.
In the second case, we know that yu ≤ Sa and

b −1 ≤ T −2 yu ≤ T −2Sa < b.

If yu = Sa, yu must belong to Ub , in which case yu < ST −1b. If yu < Sa, then
yu ∈Ua , or yu ∈Ub and yu < ST −1b.

Let us assume that yu belongs to Ub . Since yu < ST −1b, by Proposition 5.9
there are two possibilities:

(1) f n0 yu is the end of a weak cycle;
(2) there exists n0 such that we have ρ( f n yu) = ρ( f nST −1b) for all n < n0, and

ρ( f n0 yu) 6= ρ( f n0 ST −1b).
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In the first case, either f n0 ST −1b = y+
b and f n0 Sa = y−

b , or f n0 Sa = y+
b and

f n0 yu = y−
b , so either f n0+1ST −1b or f n0+1Sa is connected with level b −1. In

the second case, we first notice that

ρ( f n0−1 yu) = ρ( f n0−1ST −1b) = T −1

since if we had ρ( f n0−1 yu) = ρ( f n0−1ST −1b) = S, then we would have

ρ( f n0 yu) = ρ( f n0 ST −1b) = T −1

in contradiction with the choice of n0. Further, there are two possibilities:

(i) ρ( f n0 ST −1b) = S, ρ( f n0 yu) = T −1;
(ii) ρ( f n0 ST −1b) = T −1, ρ( f n0 yu) = S.

In the first case we obtain

f n0 yu > b > f n0 ST −1b

which contradicts the monotonicity of f n0 and the original assumption yu <
ST −1b. Thus the only possibility is

f n0 yu < b < f n0 ST −1b.

By monotonicity of f n0 we have

f n0 yu < f n0 Sa < f n0 ST −1b.

Therefore either f n0 yu = y−
b and f n0 Sa = y+

b , or f n0 Sa = y−
b and f n0 ST −1b = y+

b
are connected. So either T −1 f n0 ST −1b or T −1 f n0 Sa is connected with level b−
1. The case when yu belongs to the a-cycle is similar, and in this case f n0 yu =
y−

b and f n0 Sa = y+
b and T −1 f n0 Sa is connected with level b−1. By construction,

in both cases the common x-coordinate of the end-points of the segments at
the levels y−

b and y+
b is xb .

After an application of S the level connected with b − 1 will be connected
with ST −1b, and now, instead of 3 connected levels yu ≤ Sa ≤ ST −1b we have
at least 4 connected levels yu ≤ Sa ≤ ST −1b ≤ y ′′.

The process continues with a growing number of connected levels, the low-
est being b −1. Also the number of distinct levels will increase, and we obtain
a sequence of connected levels

b −1 ≤ ȳ1 ≤ ·· · ≤ ȳt <
a

1−a
≤ ȳt+1.

It is evident from the construction that there are no unaccounted levels y ∈
Ua,b , b −1 ≤ y ≤ ȳt+1.

Now we complete the proof that all levels of La,b are connected. For that it is
sufficient to find a sequence of connected levels with the distance between the
highest and the lowest level ≥ 1 and the lowest level ≥ T −1Sb. This is because
the set of levels in y ∈La,b satisfying T −1Sb ≤ y ≤ a +1 is periodic with period
1, and each y ∈ La,b uniquely determines a horizontal segment on level y , as
was explained just before Lemma 5.8.
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If ys+1 ≤ a, then all levels in La,b are connected. Suppose now that ys+1 > a.
If ys+1 = y+

a , then, since y+
a is already connected with y−

a , all levels of La,b are
connected. Now assume that ys+1 > y+

a . Then either

ys+1 =
b

b +1
or ys+1 <

b

b +1
.

In the first case either T Sys+1 = y` = Sb (this can only happen if ys+1 ∈ La),
or T Sys > Sb is the next level above Sb, and hence T Sys = y`. In either case
Sys+1 ≤ Sys ≤ ·· · ≤ STa ≤ Sb = T Sys+1 are the connected levels with the dis-
tance between the lowest and the highest equal to 1, thus we conclude that all
levels of La,b are connected.

In the second case, the two levels y+
a < ys+1 will produce the ends of the

cycles (one of them can be weak if one of y+
a or ys+1 is equal to 0). By the cycle

property (Lemma 4.4(ii)), there exists a level z ∈Ua,b , a
1−a < z < b such that z =

(ST S)ys+1. We claim that z = y−
b . Suppose not, and z < y−

b . Then y−
b gives rise to

the second cycle, and again by the cycle property, there exists y ∈La,b , y < b
b+1 ,

such that y−
b = ST Sy . Since ST S(z) =− z

z−1 is monotone increasing for z < 1, we
conclude that y > ys+1 in contradiction with (5.1). Thus y−

b = (ST S)ys+1. Then
T Sys+1 = Sy−

b which implies that the right end of the segment at the level Sy−
b ,

which is equal to the right end of the segment at the level Sb, is equal to the
right end of the segment at the level T Sys+1 (notice that this level may belong
to La,b , Ua,b or be at infinity if ys+1 = 0). Since ys and ys+1 were connected, the
left end of the segment at the level T Sys is equal to the right end of the segment
at the level T Sys+1 even though they may belong to the boundaries of different
connected components. Since T Sys ∈ La,b , we conclude that the segment at
the level T Sys is adjacent to the segment at the level Sb, i.e., T Sys = y`. Thus
Sys ≤ Sys−1 ≤ ·· · ≤ STa ≤ Sb ≤ T Sys are the connected levels with the distance
between the lowest and the highest equal to 1, and therefore all levels in La,b

are also connected. The proof for Ua,b follows exactly the same lines.

Now we continue with the proof of part (ii) of Theorem 5.5. In order to prove
the bijectivity of the map F on Aa,b we write it as a union of the upper and
lower connected components, Aa,b = Au

a,b ∪ A`
a,b , and subdivide each compo-

nent into 3 pieces: Au
a,b =⋃3

i=1 Ui , and A`
a,b =⋃3

i=1 Li , where

U1 =
{
(x, y) ∈ Au

a,b | y ≥ b
}

L1 =
{
(x, y) ∈ A`

a,b | y ≤ a
}

U2 =
{
(x, y) ∈ Au

a,b | b −1 ≤ y ≤ 0
}

L2 =
{
(x, y) ∈ A`

a,b | 0 ≤ y ≤ a +1
}

U3 =
{
(x, y) ∈ Au

a,b | 0 ≤ y ≤ b
}

L3 =
{
(x, y) ∈ A`

a,b | a ≤ y ≤ 0
}
.

Let

U ′
1 = T −1(U1), U ′

2 = S(U2), U ′
3 = S(U3),

L′
1 = T (L1), L′

2 = S(L2), L′
3 = S(L3)

be their images under the transformation F (see Figure 5).
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FIGURE 5. Bijectivity of the map Fa,b

Since the set Aa,b is bounded by step-functions with finitely many steps,
each of the pieces Ui ,Li have the same property, and so do their images under
F . By the construction of the set Aa,b we know that the levels corresponding
to the ends of the cycles ca and cb , if the cycles are strong, do not appear as
horizontal boundary levels; the corresponding horizontal segments, let us call
them the locking segments lie in the interior of the set Aa,b . Furthermore, the
images of all levels except for the levels next to the ends of the cycles, f k1−1Ta,
f m1−1Sa, f m2−1Sb, and f k2−1T −1b, also belong to Ua,b ∪La,b . The exceptional
levels are exactly those between 0 and b and above T Sa in Ua,b , and between a
and 0 and below T −1Sb in La,b . The images of the horizontal segments belong-
ing to these levels are the locking segments. Notice that the exceptional levels
between 0 and b and between a and 0 constitute the horizontal boundary of
the regions U3 and L3.

Transporting the rays [−∞, xb] and [xa ,∞] (with xa and xb uniquely deter-
mined by Lemma 5.6), along the corresponding cycles, and using the strong
cycle property, we see that the “locking segment” in the horizontal boundary
of U ′

1 coincides with the locking segment of the horizontal boundary of L′
3, and

the locking segment in the horizontal boundary of L′
1 coincides with the lock-

ing segment of the horizontal boundary of U ′
3. It can happen that both “locking

segments” belong to Au
a,b or A`

a,b . If only one of the numbers a or b has the
strong cycle property, then there will be only one locking segment.

If the cycle property is weak or the (a,b)-continued fraction expansion of
one or both a and b is periodic, then all levels of La , Lb , Ua , and Ub will
belong to the boundary of Aa,b , and there will be no locking segments. In these
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cases L3 = [x1,∞]× [a,0], and L′
3 = [−1/x1,0]× [−1/a,∞], where x1 = xa . Let x2

be the x-coordinate of the right vertical boundary segment of U2. Then the x-
coordinate of the right vertical boundary segment of U1 is −1/x2. Let us denote
the highest level in Ua,b by y2. Since y2 ≤ −1/a + 1, y2 − 1 ≤ −1/a is the next
level after −1/a in Ua,b . This is since if we had y ∈ Ua,b such that y2 −1 < y <
−1/a, its preimage y ′ = T y would satisfy y2 < y ′ <−1/a +1, a contradiction. By
construction of the region Aa,b the segments at the levels y2 −1 and −1/a are
connected, therefore Sx1 = T −1Sx2. This calculation shows that L′

3 and U ′
1 do

not overlap and fit together by this vertical ray.
Thus in all cases the images U ′

i , L′
i do not overlap, and Aa,b = (

⋃3
i=1 U ′

i ) ∪
(
⋃3

i=1 L′
i ). This proves the bijectivity of the map F on Aa,b except for some im-

ages of its boundary. This completes the proof in the case 0 < b ≤−a < 1.
Now we return to the case a ≤ −1 that was dropped from consideration be-

fore Lemma 5.6. The explicit cycle relations for this case have been described
in Theorem 4.6. Notice that all lower levels are connected, and T mSb is con-
nected with a +1. Therefore y` = T Sb, and this implies that xa = m. The upper
levels in the positive part are

ST −1b < ST −2ST −1b < ·· · < (ST −2)m−1ST −1b < a/(a +1)

and yu = T −1(ST −2)m−2ST −1b. Lemma 5.6 in this case holds with xa = m and
xb =−1 since the equation for adjacency of the levels yu and Sa is

T −1(ST −2)m−2ST −1xb = ST m−1Sxb =−1/m,

which implies xb = −1. Lemma 5.10 also holds with y−
a = ST m−1b and y+

a =
ST mb. Lemma 5.11 holds with y−

b = T −1Sa, y+
b = T −1ST −1b and all upper level

will be connected by an argument similar to one described above. To prove the
bijectivity of F on Aa,b one proceeds the same way as above, the only modifica-
tion being that level L2 does not exist, and L3 =

{
(x, y) ∈ A`

a,b , a ≤ y ≤ a +1
}
.

The following corollary is evident from the proof of part (ii) of Theorem 5.5.

COROLLARY 5.12. If both a and b have the strong cycle property, then for any
boundary component h of Aa,b (vertical or horizontal) there exists N > 0 such
that F N (h) is in the interior of Aa,b .

6. FINITE RECTANGULAR STRUCTURE OF THE ATTRACTING SET

Recall that the attracting set Da,b was defined by (3.1): starting with the trap-
ping region Θa,b described in Theorem 3.1, one has

Da,b =
∞⋂

n=0
Dn , with Dn =

n⋂
i=0

F i (Θa,b).

LEMMA 6.1. Suppose that the map f satisfies the finiteness condition. Then, for
each n ≥ 0, Dn is a region consisting of two connected components, the upper
one, Du

n , and the lower one, D`
n , bounded by nondecreasing step-functions.
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Proof. The proof is by induction on n. The base of induction holds by the defi-
nition of the trapping region Θa,b . For the induction step, let us assume that the
region Dn consists of two connected components, the upper one Du

n and the
lower one D`

n , bounded by nondecreasing step-functions. We will show that the
region Dn+1 consists of two connected components, Du

n+1 and D`
n+1, bounded

by nondecreasing step-functions.
In what follows, we present the proof assuming that 0 < b ≤ −a < 1. The

situation a ≤−1 is less complex due to the explicit cycle expressions described
in Theorem 4.6 and can be treated similarly with some minor modifications.
We decompose the regions Du

n and D`
n as follows

U 11
n = {

(x, y) ∈ Du
n | y ≥ T Sa

}
L11

n = {
(x, y) ∈ D`

n | y ≤ T −1Sb
}

U 12
n = {

(x, y) ∈ Du
n | b ≤ y ≤ T Sa

}
L12

n = {
(x, y) ∈ D`

n | T −1Sb ≤ y ≤ a
}

U 3
n = {

(x, y) ∈ Du
n | 0 ≤ y ≤ b

}
L3

n = {
(x, y) ∈ D`

n | a ≤ y ≤ 0
}

U 21
n =

{
(x, y) ∈ Du

n

∣∣∣ a

1−a
≤ y ≤ 0

}
L21

n =
{

(x, y) ∈ D`
n

∣∣∣ 0 ≤ y ≤ b

b +1

}
U 22

n =
{

(x, y) ∈ Du
n

∣∣∣ b −1 ≤ y ≤ a

1−a

}
L22

n =
{

(x, y) ∈ D`
n

∣∣∣ b

b +1
≤ y ≤ a +1

}
.

By induction hypothesis, the regions U 12
n , U 3

n , U 21
n , and U 22

n are bounded below
and above, and U 11

n only below, by a ray and on the right by a nondecreasing
step-function. Similarly, the regions L12

n , L3
n , L21

n , and L22
n bounded above and

below, and L11
n only above, by a ray and on the left by a nondecreasing step-

function.
If B ⊂ Du

n is one of the upper subregions, let ∂B be the union of the boundary
components of B that belong to the boundary of Du

n , and, similarly, if B ⊂ D`
n is

one of the lower subregions, let ∂B be the union of the boundary components
of B that belong to the boundary of D`

n .
Since Θa,b is a trapping region, F (Θa,b) ⊂ Θa,b , Dn+1 = F (Dn) ⊂ Dn , and

hence Du
n+1 ⊂ Du

n and D`
n+1 ⊂ D`

n .
The natural extension map F is piecewise fractional-linear, hence it maps

regions bounded by nondecreasing step-functions to regions bounded by non-
decreasing step-functions. More precisely, we have

U u
n+1 = S(U 22

n ∪U 21
n )∪T −1(U 11

n ∪U 12
n )∪S(L3

n)

U`
n+1 = S(L22

n ∪L21
n )∪T (L11

n ∪L12
n )∪S(U 3

n).

In order to show that the region Du
n+1, is connected, we notice that the region

T −1(U 11
n ∪U 12

n ) is inside the “quadrant” [−∞,0]× [b −1,∞] while S(U 22
n ∪U 21

n )
is inside the strip [0,1]× [ST −1b,∞]. Therefore, they either intersect by a ray of
the y-axis, or are disjoint. In the first case, either T −1ST −1b < Sa, which im-
plies that S(L3

n) is inside the connected region S(U 22
n ∪U 21

n )∪T −1(U 11
n ∪U 12

n ), or
Sa ≤ T −1ST −1b which implies that the level Sa belongs to the boundary of the
trapping region, and again S(L3

n) is inside the connected region S(U 22
n ∪U 21

n )∪
T −1(U 11

n ∪U 12
n ). Now suppose that the regions T −1(U 11

n ∪U 12
n ) and S(U 22

n ∪U 21
n )
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are disconnected. Notice that the right vertical boundary of the region S(L3
n)

is a ray of the y-axis, thus S(L3
n)∪S(U 22

n ∪U 21
n ) is a connected region bounded

by a nondecreasing step-function. Since T −1(U 12
n ) ∩ S(L3

n) = ;, the noncon-
nectedness situation may only appear from the intersection of T −1(U 11

n ) and
S(L3

n), i.e., inside the strip [−1,0]× [−1/a,∞]. Since f satisfies the finiteness
condition, Theorem 5.5 is applicable, and the set Aa,b constructed there be-
longs to each Dn . This is because Aa,b ⊂Θa,b , and if Aa,b ⊂ Dn , we have Aa,b =
F (Aa,b) ⊂ F (Dn) = Dn+1. The set Aa,b has finite rectangular structure and con-
tains the strip [−1,0]× [−1/a,∞]. Thus the connectedness of the region Du

n+1
is proved. Moreover, this argument shows that ∂T −1(U 11

n ) is inside Du
n+1 and

therefore does not contribute to its boundary, and

∂U u
n+1 = ∂(T −1(U 12

n ))∪∂(S(U 22
n ∪U 21

n )∪S(L3
n)).

Since ∂(T −1(U 12
n ) and ∂(S(U 22

n ∪U 21
n )∪S(L3

n)) are given by nondecreasing step-
functions, one < Sa, and the other ≥ Sa, it follows that ∂U u

n+1 is also given by
a nondecreasing step-function. A similar argument proves that D`

n+1 is con-
nected and bounded by a nondecreasing step-function.

LEMMA 6.2. Suppose that for each n, Dn consists of two connected components
as in Lemma 6.1.

(1) All horizontal levels of the boundary of Du
n belong to Ua,b (resp., D`

n belong
to La,b) and remain as horizontal levels of Du

n+1 (resp., D`
n+1).

(2) All levels of Ua,b appear in the boundary of some Du
n , and all levels of La,b

appear in the boundary of some D`
n .

(3) The attractor Da,b consists of two connected components bounded by nonde-
creasing step-functions. The upper boundary function takes all values from
the set Ua,b , and the lower boundary function takes all values from the set
La,b .

(4) The map F : Da,b → Da,b is surjective.

Proof. (1). We prove this by induction. For the base case, Du
0 contains the

horizontal levels T −1b, ST −1b, and min(T −1ST −1b,Sa). The levels T −1b and
ST −1b belong to the boundary of Du

1 . If Sa < T −1ST −1b, then ST −1b > T Sa and
therefore is the end of the cycle and does not belong to Ua,b . If Sa > T −1ST −1b,
then T −1ST −1b appears as a boundary segment of Du

1 . A similar argument ap-
plies to D`

0 that contains the horizontal levels Ta, STa, and either T STa or Sb.
For the induction step, we assume that (1) holds for k = n − 1, and prove

that it holds for k = n. Let y ∈ ∂Dn be a horizontal segment of the boundary,
y ≥ ST −1b, and y ∈ Ua,b . Then y = Sy ′, where y ′ ∈ ∂Dn−1, b − 1 ≤ y ′ < 0. By
inductive hypothesis, y ′ ∈ ∂Dn , hence y = Sy ′ ∈ ∂Dn+1. Now let y ∈ ∂Dn be a
horizontal segment of the boundary, b−1 ≤ y < Sa. Then y = T −1 y ′, where y ′ ∈
∂Dn−1, 0 < y ′ < T Sa. By inductive hypothesis, y ′ ∈ ∂Dn , hence y = Sy ′ ∈ ∂Dn+1.

The level y = Sa appears as a boundary segment of Du
n since T −1(∂(U 11

n−1)∪
∂(U 12

n−1)) and S(∂(L3
n−1)) do not overlap. Then y = Sy ′, where y ′ = a is the y-

coordinate of the horizontal lower boundary of L3
n−1. Since L3

n ⊂ L3
n−1 and U 11

n ∪
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U 12
n ⊂U 11

n−1∪U 12
n−1, we get that T −1(∂(U 11

n )∪∂(U 12
n )) and S(∂(L3

n)) do not overlap,
and y = Sa will appear as a boundary segment of Du

n+1.
On the other hand, assume y ∈ ∂Dn+1 was not a horizontal level of ∂Dn .

Then y = Sy ′ for some y ′ ∈ ∂(U 22
n ∪U 21

n ), y = T −1 y ′ for some y ′ ∈ ∂(U 12
n ), or

y = Sa. In all cases y ∈Ua,b by the structure of the sets Ua and Ub established
in Theorems 4.5 and 4.2.

(2). We start with level −1/(b − 1) which belongs to the boundary of the
trapping region Θa,b by definition. We have seen that if T −1ST −1b ∈ Ub , then
the level appears in the boundary of Du

1 . Now, if b −1 < T −k ST −1b < a/(1−a)
(for the smallest k = 2 or 3), then the expansion continues, each T −i ST −1b,
i ≤ k, appears for the first time in the boundary of Du

i for i ≤ k, and the next

element in the cycle, ST −k ST −1b, appears in the boundary of Du
k+1. Using the

structure of the set Ub established in Theorem 4.2 we see that all levels of the
set Ub appear as boundary levels of some Du

n . We use the same argument for
level −1/a which appears for the first time in the boundary of some Du

n0
, to see

that all elements of the set Ua appear as boundary levels of all successive sets
Du

n . The same argument works for the lower boundary.
(3). Thus starting with some n, all sets Dn have two connected components

bounded by nondecreasing step-functions whose y levels coincide with the sets
Ua,b and La,b . Therefore, the attractor Da,b =⋂∞

n=0 Dn has the same property.
(4). The surjectivity of the map F on Da,b follows from the nesting property

of the sets Dn .

A priori, the map F on Da,b does not have to be injective, but in our case it
will be since we will identify Da,b with an earlier constructed set Aa,b .

COROLLARY 6.3. If the map f satisfies the finiteness condition, then the attrac-
tor Da,b has finite rectangular structure, i.e., bounded by nondecreasing step-
functions with a finite number of steps.

THEOREM 6.4. If the map f satisfies the finiteness condition, then the set Aa,b

constructed in Theorem 5.5 is the attractor for the map F .

Proof. We proved in Theorem 5.5 that the set Aa,b constructed there is uniquely
determined by the prescribed set of y-levels Ua,b ∪La,b . By Corollary 6.3, the
set Da,b has finite rectangular structure with the same set of y-levels. Now we
look at the x-levels of the jumps of its boundary step-functions. Take the vertex
(x,b − 1) of Da,b . From the surjectivity of F on Da,b , there is a point z ∈ Da,b

such that F (z) = (x,b − 1). Then z must be the intersection of the ray at the
level b with the boundary of Da,b , i.e., z = (x̃b ,b), hence x = x̃b−1. Continue the
same argument: look at the vertex at the level −1/(b−1). It must be F (x̃b−1,b−
1), etc. Since each y-level of the boundary has a unique “predecessor” in its
orbit, all x-levels of the jumps obtained by “transporting” the rays [−∞, x̃b] and
[x̃a ,∞] over the corresponding cycles, satisfy the same equations that defined
the boundary of the set Aa,b of Theorem 5.5. Therefore x̃a = xa , x̃b = xb , the
step-functions that define the boundaries are the same, and Da,b = Aa,b .
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7. REDUCTION THEORY CONJECTURE

Don Zagier conjectured that the Reduction theory properties, stated in the
Introduction, hold for every (a,b) ∈P . He was motivated by the classical cases
and computer experimentations with random parameter values (a,b) ∈P (see
Figures 1 and 6 for attractors obtained by iterating random points using Math-
ematica program).

The following theorem gives a sufficient condition for the Reduction theory
conjecture to hold:

THEOREM 7.1. If both a and b have the strong cycle property, then for every
point (x, y) ∈ R̄2 à∆ there exists N > 0 such that F N (x, y) ∈ Da,b .

Proof. Every point (x, y) ∈ R̄2 à∆ is mapped to the trapping region by some it-
erate F N1 . Since the sets Dn are nested and contain Da,b , for large N , F N (x, y)
will be close to the boundary of Da,b . By Corollary 5.12, for any boundary com-
ponent h of Da,b there exists N2 > 0 such that F N2 (h) is inside Da,b . Therefore,
there exists a large enough N > 0 such that F N (x, y) will be in the interior of
Da,b .

The strong cycle property is not necessary for the Reduction theory conjec-
ture to hold. For example, it holds for the two classical expansions (−1,0) and
(−1,1) that satisfy only a weak cycle property. In the third classical expansion
(−1/2,1/2) that also satisfies a weak cycle property, property (3) of the conjec-
ture does not hold for some points (x, y) with y equivalent to r = (3−

p
5)/2.
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FIGURE 6. Attractors for the classical cases

The next result shows that, under the finiteness condition, almost every point
(x, y) ∈ R̄2 à∆ lands in the attractor Da,b after finitely many iterations.

PROPOSITION 7.2. If the map fa,b satisfies the finiteness condition, then for al-
most every point (x, y) ∈ R̄2 à∆, there exists N > 0 such that F N

a,b(x, y) ∈ Da,b .

Proof. Let (x, y) ∈ R2 with y irrational and y = bn0,n1,n2, . . .ea,b . In the proof of
Theorem 3.1, we showed that there exists k > 0 such that

(x j+1, y j+1) = ST −n j · · ·ST −n1 ST −n0 (x, y) ∈ [−1,1]× ([−1/a,∞]∪ [−∞,−1/b])
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for all j ≥ k. The point F N
a,b(x, y) = (xk+1, yk+1) is in Aa,b , if (xk+1, yk+1) ∈ [−1,0]×

[−1/a,∞] or (xk+1, yk+1) ∈ [0,1]× [−∞,−1/b]. Also, F N+1(x, y) = F (xk+1, yk+1) is
in Aa,b if (xk+1, yk+1) ∈ [0,1]×[−1/a+1,∞] or (xk+1, yk+1) ∈ [−1,0]×[−∞,−1/b−
1]. Thus we are left with analyzing the situation when the sequence of iterates

(x j+1, y j+1) = ST −n j · · ·ST −n1 ST −n0 (x, y)

belongs to [0,1]× [−1/a,−1/a +1] for all j ≥ k (or [−1,0]× [−1/b,−1/b −1] for
all j ≥ k). Assume that we are in the first situation: y j+1 ∈ [−1/a,−1/a +1] for
all j ≥ k. This implies that all digits n j+1, j ≥ k are either b−1/ae or b−1/ae+1.
In the second situation, the digits n j+1, j ≥ k are either b−1/be or b−1/be −
1. Therefore the continued fraction expansion of y is written with only two
consecutive digits (starting from a certain position). By using Proposition 2.4
and Remark 2.5 we obtain that the set of all such points has zero Lebesgue
measure. This proves our result.

REMARK 7.3. In the next section we show that there is a nonempty Cantor-
like set E ⊂ ∆ belonging to the boundary segment b = a +1 of P such that for
(a,b) ∈ E the set Ua,b ∪La,b is infinite. Therefore, for (a,b) ∈ E either the set
Du

n or D`
n is disconnected for some n > 0, or, by Lemma 6.2(3), the attractor

Da,b consists of two connected components whose boundary functions are not
step-functions with finitely many steps.

8. SET OF EXCEPTIONS TO THE FINITENESS CONDITION

In this section we study the structure of the set E ⊂ P of exceptions to the
finiteness condition. We write E = Eb∪Ea, where Eb (resp., Ea) consists of all
points (a,b) ∈P for which b (resp., a) does not satisfy the finiteness condition,
i.e., either the truncated orbit Ub or Lb is infinite (resp., Ua or La).

We analyze the set Eb. Recall that, by Proposition 5.3, the set Ub is infinite if
and only if Lb is infinite, therefore it is sufficient to analyze the condition that
the orbit Lb is not eventually periodic and the values of Lb ∩ [a,b] belong to
the interval ( b

b+1 , a+1). We point out that this condition also holds for the case
of Theorem 4.2(I)(ii) where the lower orbit of b continues with the lower orbit
of a (La ⊂ Lb). For La to be infinite, the values of La ∩ [a,b] need to belong
to the interval ( b

b+1 , a +1), as described by Theorem 4.5.
As before, we restrict our analysis (due to the symmetry considerations) to

the parameter subset of P given by b ≤−a and write Eb =
⋃∞

m=3 E m
b

where b ∈
E m
b

if b ∈ Eb and T mSb ∈ ( b
b+1 , a +1). By Theorem 4.2 and its proof, it follows

that if b ∈ E m
b

, then the first digit of the (a,b)-continued fraction expansion of
Sb is −m and all the other digits are either −m or −(m +1).

We describe a recursive construction of the exceptional set E m
b

. One starts
with the ‘triangular’ set

T m
b =

{
(a,b) ∈P

∣∣∣ b

b +1
≤ T mSb ≤ a +1

}
.

JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 4 (2010), 637–691



672 SVETLANA KATOK AND ILIE UGARCOVICI

The range of possible values of b in T m
b

is given by the interval [b, b̄] where

T mSb̄ = b̄ and T mSb = b/(b +1). Since b
b+1 ≤ b for all b ≥ 0, and the function

T mSb is monotone increasing, we obtain that b < b̄, and b is the horizontal
boundary of T m

b
, while b̄ is the b-coordinate of its ‘vertex’.

At the next stage we obtain the following regions:

T m,m
b

=
{

(a,b) ∈T m
b

∣∣∣ b

b +1
≤ T mST mSb ≤ a +1

}
T m,m+1
b

=
{

(a,b) ∈T m
b

∣∣∣ b

b +1
≤ T m+1ST mSb ≤ a +1

}
.

By the same argument as above each region is ‘triangular’, i.e., the b-coordinate
of its lower (horizontal) boundary is less than the b-coordinate of its vertex.
We show that its intersection with the triangular region obtained on the previ-
ous step is either empty or has ‘triangular’ shape. The horizontal boundary of
T m,m
b

has the b-coordinate given by the relation T mST mSb = b/(b +1) (call it

b̃). We have

T mST mSb = T mS

(
b

b +1

)
= T mSb −1 =− 1

b +1
< b

b +1
,

so b < b̃. On the other hand,

T mST mSb̄ = T mSb̄ = b̄,

which shows that the hyperbola T mST mSb = b intersects the diagonal side
b = a + 1 at the point with b-coordinate b̄. It follows that the region T m,m

b
is

triangular and nonempty with b < b̃ < b̄.
The upper boundary of T m,m+1

b
is given by the hyperbola T m+1ST mSb = a+

1. Notice that, if a +1 = T mSb, then the point (a,b) lies on the curves T mSb =
a +1 (obviously) and T m+1ST mSb = a +1 because

T m+1ST mSb = T m+1S(b/(b +1)) = T mSb = a +1.

Therefore, the entire horizontal boundary of T m
b

belongs to that of T m,m+1
b

.
Moreover, the hyperbola T m+1ST mSb = a+1 intersects the diagonal side b−a =
1 at the point b̂ satisfying T m+1ST mSb̂ = b̂. Therefore, T mST mSb̂ = b̂−1 < b̂

b̂+1
,

i.e., b̂ < b̃. In this case we have b < b̂ < b̃ < b̄, and the two triangular regions
T m,m
b

and T m,m+1
b

are disjoint and nonempty.
The situation becomes more complicated as we proceed recursively. Let

T
n1,n2,...,nk

b
be one of the regions obtained after k steps of this construction,

with n1 = m and ni ∈ {m,m +1} for 2 ≤ i ≤ k. At the next step we get two new
sets (possibly empty) (see Figure 7):

T
n1,n2,...,nk ,m
b

=
{

(a,b) ∈T
n1,n2,...,nk

b

∣∣∣ b

b +1
≤ T mST nk S · · ·T n1 Sb ≤ a +1

}
T

n1,n2,...,nk ,m+1
b

=
{

(a,b) ∈T
n1,n2,...,nk

b

∣∣∣ b

b +1
≤ T m+1ST nk S · · ·T n1 Sb ≤ a +1

}
.
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T
n1,n2,...,nk ,m

b

T
n1,n2,...,nk ,m+1

b

b

b̂

b̃

b̄

a a
′

FIGURE 7. Set T
n1,n2,...,nk

b
and its two subregions

As in the base case, the inequality T mST nk S · · ·T n1 Sb ≤ a+1 of T
n1,n2,...,nk ,m
b

is satisfied by all points of T
n1,n2,...,nk

b
because of the monotone increasing prop-

erty of T,S and the fact that T nk S · · ·T n1 Sb ≤ a +1 implies

T mST nk S · · ·T n1 Sb ≤ T mS(a +1) ≤ T mS(b) ≤ a +1.

Thus the upper boundary of the region T
n1,n2,...,nk ,m
b

(if nonempty) is part of
the upper boundary of T

n1,n2,...,nk

b
; it is the lower (horizontal) boundary that

changes. In a similar way, the defining inequality b
b+1 ≤ T m+1ST nk S · · ·T n1 Sb of

T
n1,n2,...,nk ,m+1
b

is satisfied by all points of T
n1,n2,...,nk

b
because

T m+1ST nk S · · ·T n1 Sb ≥ T m+1S
b

b +1
= m − 1

b
= T mSb ≥ b

b +1
.

Thus the lower boundary of T
n1,n2,...,nk ,m+1
b

(if nonempty) is part of the lower
boundary of T

n1,n2,...,nk

b
. Therefore, we can describe the above sets as

T
n1,n2,...,nk ,m
b

=
{

(a,b) ∈T
n1,n2,...,nk

b

∣∣∣ b

b +1
≤ T mST nk S · · ·T n1 Sb

}
T

n1,n2,...,nk ,m+1
b

= {
(a,b) ∈T

n1,n2,...,nk

b

∣∣ T m+1ST nk S · · ·T n1 Sb ≤ a +1
}
.

By the same reason as in the base case, the regions T
n1,...,nk ,m
b

and T
n1,...,nk ,m+1
b

do not overlap.
The set E m

b
is now obtained as the union of all sets of type

E
(ni )
b

=
∞⋂

k=1
T

n1,n2,...,nk

b

where n1 = m, ni ∈ {m,m+1} if i ≥ 2, and the sequence (ni ) is not eventually pe-
riodic. If such a set E

(ni )
b

is nonempty and (a,b) belongs to it, then b is uniquely
determined from the (a,b)-expansion of Sb = b−n1,−n2, . . .e.

First we need some additional lemmas.
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LEMMA 8.1.

(i) A point b ∈ [0,1] satisfying T nk S · · ·T n1 Sb = b with |ni | ≥ 2 can be written
formally using a periodic “−” continued fraction expansion

(8.1) b =−1/(−n1,−n2, . . . ,−nk ) = (0,−n1,−n2, . . . ,−nk ).

If b is in T
n1,n2,...,nk

b , then Sb has the (a,b)-continued fraction expansion

bSbea,b = b−n1,−n2, . . . ,−nke.

(ii) A point b in [0,1] satisfying T nk S · · ·T n1 Sb = b/(b +1) can be written for-
mally using the periodic “−” continued fraction expansion

(8.2) b = (0,−n1,−n2, . . . ,−nk ,−(m +1)).

If the point b ∈ T n1,n2,...,nk

b , then bSbea,b = b−n1,−n2, . . . ,−nk ,−(m +1)e.

Proof. One can verify directly that the point b given by (8.1) is the fixed point of
the hyperbolic transformation T nk S · · ·T n1 S and b ∈ [0,1] (see also [11, Proposi-
tion 1.3]).

The equation in part (ii) can be written as ST ST nk S · · ·T n1 Sb = b and one
verifies directly that the value b given by (8.2) is the fixed point of that hyper-
bolic transformation and b ∈ [0,1].

Notice that the relation (0,−n1,−n2, . . . ) = −(0,n1,n2, . . . ) is satisfied, assum-
ing that the formal “−” continued fraction expansions are convergent (from the
proof of Theorem 2.1, the convergence property holds if |ni | ≥ 2 for all i ≥ 1).

DEFINITION 8.2. We say that two sequences (finite or infinite) σ1 = (ni ) and
σ2 = (p j ) of positive integers are in lexicographic order, σ1 ≺ σ2, if on the first
position k where the two sequences differ one has nk < pk , or if the finite se-
quence (ni ) is a starting subsequence of (p j ).

The following property follows from the monotonicity of T and S.

LEMMA 8.3. Given two infinite sequences σ1 = (ni ) and σ2 = (p j ) of integers
ni ≥ 2 and p j ≥ 2 such that σ1 ≺σ2, then (0,n1,n2, . . . ) < (0, p1, p2, . . . ).

The next lemma provides necessary conditions for a set E
(ni )
b

to be nonempty.
Denote by lm the length of the initial block of m’s and by lm+1 the length of the
first block of (m +1)’s in (ni ).

LEMMA 8.4.

(i) If a set E
(ni )
b

in the upper region T m,m
b

is nonempty then the sequence (ni )
contains no consecutive (m+1)’s and the length of any block of m’s is equal
to lm or lm −1.

(ii) If a set E
(ni )
b

in the lower region T m,m+1
b

is nonempty then the sequence
(ni ) contains no consecutive m’s and the length of any block of (m +1)’s is
equal to lm+1 or lm+1 +1.
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Proof. (i). Assume that the sequence (ni ) contains two consecutive (m +1)’s.
Then some T

n1,n2,...,nk ,m+1,m+1
b

(with n1 = n2 = nk = m) is nonempty. The upper
vertex of such a triangular set satisfies the inequality

b̄ ≤−(0,n1,n2, . . . ,nk ,m +1,m +1) =−(0,m,m, . . . ,m,m +1, m +1 , . . . ),

while the lower (horizontal) boundary satisfies

b ≥−(0,n1,n2, . . . ,nk ,m +1) =−(0,m,m, . . . ,m,m +1, m , . . . ).

This implies that b > b̄ because the entries of the corresponding continued
fractions with positive entries are in lexicographic order (they coincide on the
first k +1 places, and on the (k +2)th position the first continued fraction has
digit m +1 while the second one has digit m), i.e., the set T

n1,n2,...,nk ,m+1,m+1
b

is
empty.

Now assume that there exists a nonempty set T n1,n2,...,nk ,m,m,...,m (nk = m+1)
with the final block of m’s of length greater than lm . The upper vertex of this
set is given by

b̄ ≤−(0,n1,n2, . . . ,nk ) =−(0,m,m, . . . ,m︸ ︷︷ ︸
lm

,m +1, . . . ,nk )

=−(0,m,m, . . . ,m︸ ︷︷ ︸
lm

,m +1, . . . ,nk ,m,m, . . . ,m︸ ︷︷ ︸
lm

,m +1, . . . ),

while the lower horizontal segment is given by

b ≥−(0,n1,n2, . . . ,nk ,m,m . . . ,m︸ ︷︷ ︸
q

,m +1).

If lm < q then the two continued fractions coincide on the first k + p entries.
Looking at the k+p+1 entry, we get that b̄ < b, hence the set T

n1,n2,...,nk ,m,m,...,m
b

would be empty.
Assume now that there exists a nonempty set of type T

n1,n2,...,nk ,m,m,...,m,m+1
b

(nk = m +1) with the last block of m’s of length q strictly less than lm −1. Be-
cause nk = m +1, nk−1 = m, and T

n1,n2,...,nk ,m,m,...,m,m+1
b

⊂T
n1,n2,...,nk

b
the lower

limit of the set T
n1,n2,...,nk ,m,m,...,m,m+1
b

satisfies the relation

b ≥−(0,n1,n2, . . . ,nk−1,m +1) =−(0,n1,n2, . . . ,nk−1,nk )

=−(0,m,m, . . . ,m︸ ︷︷ ︸
lm

,m +1, . . . ,nk ,m, . . . ,m︸ ︷︷ ︸
lm−1

,m +1, . . . ),

while the upper limit of the same set satisfies the relation

b̄ ≤−(0,n1,n2, . . . ,nk ,m,m . . . ,m︸ ︷︷ ︸
q

,m +1) .

This implies that b̄ < b because the two continued fractions coincide on their
first k+q entries, and the k+q+1 entries are m, and m+1 respectively. There-
fore the set T

n1,n2,...,nk ,m,m,...,m,m+1
b

is empty.
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(ii). Assume that a set T
n1,n2,...,nk ,m,m
b

with n1 = m, n2 = m+1, and nk = m+1
is nonempty. The upper vertex of such a set satisfies the inequality

b̄ ≤−(0,n1,n2, . . . ,nk ) =−(0,m,m +1, . . . ,nk ,m, m +1 , . . . ),

while the lower horizontal segment satisfies the relation

b ≥−(0,n1,n2, . . . ,nk ,m,m,m +1) =−(0,m,m +1, . . . ,nk ,m, m ,m +1, . . . ).

Then b > b̄ because the sequences of the corresponding continued fractions
with positive entries are in lexicographic order, i.e., the set T

n1,n2,...,nk ,m,m
b

is
empty.

Now assume that there exists a nonempty set T
n1,n2,...,nk ,m+1,m+1,...,m+1
b

(nk =
m) with the final block of (m +1)’s of length q greater than lm+1 +1. The upper
vertex of this set satisfies

b̄ ≤−(0,m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

,m, . . . ,nk ,m +1, . . . ,m +1︸ ︷︷ ︸
q

),

while the lower horizontal segment satisfies the relation

b ≥−(0,n1,n2, . . . ,nk ,m +1)

=−(0,m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

,m, . . . ,nk ,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1+1

,m, . . .).

Since the two continued fraction expansions with positive entries coincide on
the first k + lm+1 +1 entries and their k + lm+1 +2 entries are m +1 and m, re-
spectively, we obtain b̄ < b, i.e., the set T

n1,n2,...,nk ,m+1,m+1,...,m+1
b

is empty.

Finally, suppose that there exists a nonempty set T
n1,n2,...,nk ,m+1,m+1,...,m+1,m
b

(nk = m) with the final block of (m +1)’s of length q less than lm+1. The upper
vertex of this set satisfies

b̄ ≤−(0,m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

,m, . . . ,nk ,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

),

while the lower horizontal segment satisfies the relation

b ≥−(0,n1,n2, . . . ,nk ,m +1, . . . ,m +1︸ ︷︷ ︸
q

,m,m +1)

=−(0,m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

,m, . . . ,nk ,m +1, . . . ,m +1︸ ︷︷ ︸
q

,m, . . .).

Since the two continued fraction expansions with positive entries coincide on
the first k + lm+1 entries and their (k + lm+1 + 1)th entries are (m + 1) and m,
respectively, we obtain b̄ < b, i.e., the set T

n1,n2,...,nk ,m+1,m+1,...,m+1,m
b

is empty.

In what follows, we describe in an explicit manner the symbolic properties
of a sequence (ni ) for which E

(ni )
b

6= ;. Notice that in both cases of Lemma 8.4,
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there are two admissible blocks that can be used to express the admissible se-
quence (ni ):

A(1) = (m, . . . ,m︸ ︷︷ ︸
lm

,m +1) and B (1) = (m, . . . ,m︸ ︷︷ ︸
lm−1

,m +1) with lm ≥ 2;

A(1) = (m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

) and B (1) = (m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1+1

) with lm+1 ≥ 1.

In both situations, A(1) ≺ B (1). One could think of A(1) as being the new ‘m’
and B (1) the new ‘m+1’, and treat the original sequence of m’s and m+1’s as a
sequence of A(1)’s and B (1)’s. Furthermore, the next lemma shows that such
a substitution process can be continued recursively to construct blocks A(n)

and B (n) for any n ≥ 1, so the original sequence (ni ) may be considered to be
a sequence of A(n)’s and B (n)’s. Moreover, only particular blocks of A(n)’s and
B (n)’s warrant nonempty triangular regions of the next generation.

Let us also introduce the notations A(0) = m and B (0) = m +1. Assume that
E

(ni )
b

is a nonempty set.

LEMMA 8.5. For every n ≥ 0, there exist integers lA(n) ≥ 2, lB (n) ≥ 1 such that the
sequence (ni ) can be written as a concatenation of blocks

(8.3) A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n)), B (n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)−1

,B (n))

or

(8.4) A(n+1) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

), B (n+1) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)+1

).

Proof. Notice that Lemma 8.4 proves the above result for n = 0 with lA(0) = lm ,
lB (0) = lm+1. We show inductively that

(8.5) A(n) ≺ B (n)

and if a finite sequence σ starts with an A(n) block and ends with a B (n) block,
σ= (A(n),τ,B (n)), then the lower boundary b(σ) of T σ

b
(if nonempty) satisfies

(8.6) b(σ) ≥−(0, A(n),τ,B (n)).

Relation (8.5) is obviously true for n = 0; (8.6) is also satisfied if n = 0, since one
applies Lemma 8.1(ii) to the sequence σ̃ = (A(0),τ) where T σ̃

b
⊃ T σ

b
. We point

out that by applying Lemma 8.1(i) to the region T σ we have

(8.7) b̄(σ) ≤−(0,σ) =−(0, A(n),τ,B (n)).

To prove the inductive step, suppose that for some n ≥ 1, we can rewrite the
sequence (ni ) using blocks A(n+1) and B (n+1) as in case (8.3) or (8.4).

Case 1 : Assume A(n+1) and B (n+1) are given by (8.3). It follows immediately
that A(n+1) ≺ B (n+1) since A(n) ≺ B (n). Also, if a sequence σ starts with an A(n+1)
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block and ends with a B (n+1) block (thus, implicitly, σ starts with an A(n) block
and ends with a B (n) block),

σ= (A(n+1),τ,B (n+1)) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n),τ, A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)−1

,B (n))

then, by applying (8.6) to

σ̃= (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n),τ) = (A(n),B (n+1),τ),

which starts with A(n) and ends with B (n), we get

b(σ) ≥ b(σ̃) ≥−(0, A(n),B (n+1),τ) =−(0, A(n),B (n+1),τ,B (n+1)).

Therefore, (8.6) holds for n +1, since (A(n),B (n+1)) = A(n+1).
Now assume that (ni ) starts with a block of A(n+1)’s of length lA(n+1) > 1. We

prove that the sequence (ni ) cannot have two consecutive B (n+1)’s and any se-
quence of consecutive blocks A(n+1) has length lA(n+1) or lA(n+1)−1. Suppose the
sequence (ni ) contains two consecutive blocks of type B (n+1):

(ni ) = (A(n+1), A(n+1), . . . , A(n+1),B (n+1),B (n+1), . . . ).

We look at the set

T A(n+1) A(n+1)···A(n+1)B (n+1)B (n+1)

and remark that the upper boundary satisfies (from (8.7))

(8.8) b̄ ≤−(0, A(n+1), A(n+1), . . . , A(n+1),B (n+1),B (n+1))

and the lower boundary satisfies (from (8.6))

(8.9) b ≥−(0, A(n+1), A(n+1), . . . , A(n+1),B (n+1)).

But (8.8) and (8.9) imply that b > b̄, because the two corresponding continued
fractions with positive entries are in lexicographic order. Thus, there cannot be
two consecutive B (n+1) blocks in the sequence (ni ).

Now, let us check that the sequence (ni ) cannot have a block of A(n+1)’s of
length q > lA(n+1) . Assume the contrary,

(ni ) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1),τ,B (n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
q

,B (n+1), . . . ).

Then the set T
(ni )
b

has the upper bound b̄ satisfying

b̄ ≤−(0, A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1),τ,B (n+1))

while the lower bound b satisfies by (8.6)

b ≥−(0, A(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,B (n+1),τ,B (n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
q

,B (n+1)).
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Comparing the two continued fractions, we get that b̄ < b, since A(n+1) ≺ B (n+1)

and q > lA(n+1) .
Now assume that (ni ) starts with A(n+1) and then continues with a block of

B (n+1)’s of length lB (n+1) ≥ 1. We prove that the sequence (ni ) cannot have two
consecutive A(n+1)’s and any sequence of consecutive blocks B (n+1) has length
lB (n+1) or lB (n+1) +1. Suppose the sequence (ni ) contains two (or more) consecu-
tive blocks of type A(n+1):

(ni ) = (A(n+1),B (n+1),τ,B (n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
q≥2

,B (n+1), . . . ).

We study the region T A(n+1),B (n+1),τ,B (n+1),A(n+1),...,A(n+1),B (n+1)
and remark that its up-

per boundary satisfies (from (8.7))

(8.10) b̄ ≤−(0, A(n+1),B (n+1),τ,B (n+1))

and the lower boundary satisfies (from (8.6))

(8.11) b ≥−(0, A(n+1),B (n+1),τ,B (n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
q≥2

,B (n+1)).

But (8.10) and (8.11) imply that b > b̄ because the two corresponding continued
fractions with positive entries are in lexicographic order. Thus, there cannot be
two consecutive A(n+1) blocks in the sequence (ni ).

Now, let us check that the sequence (ni ) cannot have a block of B (n+1)’s of
length q > lB (n+1) +1. Assume the contrary,

(ni ) = (A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

, A(n+1),τ, A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
q

, A(n+1), . . . ).

Then the set T (ni ) has the upper bound b̄ satisfying

b̄ ≤−(0, A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

, A(n+1),τ, A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
q

, A(n+1))

while the lower bound b satisfies by (8.6)

b ≥−(0, A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

, A(n+1),τ, A(n+1),B (n+1)).

Comparing the two continued fractions, we get that b̄ < b.
Case 2 : Assume A(n+1) and B (n+1) are given by (8.4). It follows that A(n+1) ≺

B (n+1) since A(n+1) is the beginning block of B (n+1). Also, if a sequence σ starts
with an A(n+1) block and ends with a B (n+1) block (thus, implicitly, σ starts with
an A(n) block and ends with a B (n) block),

σ= (A(n+1),τ,B (n+1)) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

,τ, A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)+1

).
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Then by applying (8.6) to

σ̃= (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

,τ, A(n),B (n)),

which starts with A(n) and ends with B (n), we get

b(σ) ≥ b(σ̃) ≥−(0, A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

,τ, A(n),B (n))

=−(0, A(n+1),τ, A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)+1

).

Thus, (8.6) holds for n +1.
Assume that (ni ) starts with a sequence of A(n+1)’s of length lA(n+1) > 1. Sim-

ilar to the analysis of the first case, one proves that the sequence (ni ) cannot
have two consecutive B (n+1)’s and any sequence of consecutive blocks A(n+1)

has length lA(n+1) or lA(n+1) −1.
If the sequence (ni ) starts with A(n+1) and then continues with a sequence

of B (n+1)’s of length lB (n+1) ≥ 1, one can prove that the sequence (ni ) cannot
have two consecutive A(n+1)’s and any sequence of consecutive blocks B (n+1)

has length lB (n+1) or lB (n+1) +1.

Additionally, we prove the following.

LEMMA 8.6. If the block τ1 = (ni , . . . ,nl ) is a tail of A(n) and τ2 = (p j , . . . , ph) is a
tail of B (n), then A(n) ≺ τ1 and B (n) ≺ τ2.

Proof. The statement is obviously true if n = 1. Assume it is true for some
n both for A(n) and B (n). We analyze the case of A(n+1) being given by (8.3),
A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸

lA(n)

,B (n)). Consider an arbitrary tail τ of A(n+1); τ could start

with a block A(n) or a tail of A(n) or τ coincides with B (n) or a tail of B (n). In
all situations, the inductive hypothesis and the fact that A(n) ≺ B (n) prove that
A(n+1) ≺ τ. The case of A(n+1) given by (8.4) is treated similarly.

REMARK 8.7. Using the relations (8.6) and (8.7), notice that a set T A(n+1)

b (if
nonempty) has the upper vertex satisfying

(8.12) b̄n+1 ≤−(0, A(n+1))

and a lower horizontal boundary that satisfies

(8.13) bn+1 ≥−(0, A(n+1),B (n+1))

if A(n+1) is given by the substitution rule (8.3), and

(8.14) bn+1 ≥−(0, A(n),B (n))

if A(n+1) is given by (8.4).
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We will prove that the above inequalities are actually equality relations. For
that we construct a starting subsequence of A(n+1) defined inductively as

σ(1) =


(m, . . . ,m︸ ︷︷ ︸

lm

) if A(1) = (m, . . . ,m︸ ︷︷ ︸
lm

,m +1)

(m) if A(1) = (m,m +1, . . . ,m +1︸ ︷︷ ︸
lm+1

)

Case 1 : If A(n) is given by a relation of type (8.3), i.e., if we have A(n) =
(A(n−1), . . . , A(n−1),B (n−1)), then

(8.15) σ(n+1) =


(A(n), . . . , A(n)︸ ︷︷ ︸

l(n)
A −1

,σ(n)) if A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n))

σ(n) if A(n+1) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

Case 2 : If A(n) is given by a relation of type (8.4), i.e., if we have A(n) =
(A(n−1),B (n−1), . . . ,B (n−1)), then

(8.16) σ(n+1) =


(A(n), . . . , A(n)︸ ︷︷ ︸

l(n)
A

,σ(n)) if A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n))

(A(n),σ(n)) if A(n+1) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

We introduce the notation f σ to denote the transformation T nk S · · ·T n1 S if σ=
(n1, . . . ,nk ).

LEMMA 8.8. Let σ(n+1) be the starting block of A(n+1) defined as above. Then the
equation

f σ
(n+1)

b = b

b +1
has a unique solution b ∈ [0,1] given by

(8.17) bn+1 =
{
−(0, A(n+1),B (n+1)) if A(n+1) is given by (8.3),

−(0, A(n),B (n)) if A(n+1) is given by (8.4).

Proof. We proceed with an inductive proof, and as part of it we also show that

(8.18) (σ(n+1),m +1, Ã(n)) =


A(n+1) if A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸

lA(n)

,B (n))

(A(n),B (n)) if A(n+1) = (A(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

where A(n) = (m, Ã(n)). The relation (8.17) is true for n = 0 due to Lemma 8.1(ii).
Also, (8.18) follows immediately. Suppose now that the inductive relations hold

for some n. We analyze the solution of f σ
(n+2)

b = b
b+1 .

Assume that A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
lA(n)

,B (n)). We look at the two possible cases:
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Case 1 : If A(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1)), σ(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1)).

Using Lemma 8.1(ii), the solution to f σ
(n+2)

b = b
b+1 is given by

bn+2 =−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−2

,σ(n+1),m +1)

=−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−2

,σ(n+1),m +1, Ã(n+1))

=−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−2

,σ(n+1),m +1, Ã(n),B (n+1))

=−(0, A(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−2

, A(n+1),B (n+1))

=−(0, A(n+1),B (n+2)) =−(0, A(n+2),B (n+2)).

Also,

(σ(n+2),m +1, Ã(n+1)) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1),m +1, Ã(n),B (n+1))

= (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

, A(n+1),B (n+1)) = A(n+2).

Case 2 : If A(n+2) = (A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

), then σ(n+2) = σ(n+1), and the in-

duction step gives us the solution of f σ(n+2)b = b
b+1 as bn+2 =−(0, A(n+1),B (n+1)).

Also,

(σ(n+2),m +1, Ã(n+1)) = (σ(n+1),m +1, Ã(n),B (n+1)) = (A(n+1),B (n+1)).

Now assume that A(n+1) = (An ,B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

). We look again at the two possi-

ble cases:
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Case 1 : If A(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1)), σ(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,σ(n+1)).

Using Lemma 8.1(ii), the solution to f σ(n+2)b = b
b+1 is given by

bn+2 =−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1),m +1)

=−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1),m +1, Ã(n+1))

=−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1),m +1, Ã(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

=−(0,m, Ã(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

, A(n),B (n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

=−(0, A(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,B (n+1)) =−(0, A(n+2),B (n+2)).

A similar approach gives us that (σ(n+2),m +1, Ã(n+1)) = A(n+2).
Case 2 : If A(n+2) = (A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸

lB(n+1)

), then σ(n+2) = (A(n+1),σ(n+1)). Us-

ing Lemma 8.1(ii), the solution to f σ(n+2)b = b
b+1 is given by

bn+2 =−(0,m, Ã(n+1),σ(n+1),m +1)

=−(0,m, Ã(n+1),σ(n+1),m +1, Ã(n+1))

=−(0,m, Ã(n+1),σ(n+1),m +1, Ã(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

=−(0,m, Ã(n+1), A(n),B (n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

=−(0, A(n+1),B (n+1)).

Also,

(σ(n+2),m +1, Ã(n+1)) = (A(n+1),σ(n+1),m +1, Ã(n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

)

= (A(n+1), An ,B (n),B (n), . . . ,B (n)︸ ︷︷ ︸
lB(n)

) = (A(n+1),B (n+1)).

THEOREM 8.9. Any sequence (ni ) constructed recursively using relations (8.3)
and (8.4) provides a nonempty set E

(ni )
b .
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Proof. We prove inductively that any set T A(n+1)

b is nonempty and the relations
(8.12) and (8.13) or (8.14) are actual equalities, i.e.,

(8.19) b̄n+1 =−(0, A(n+1))

and a lower horizontal boundary that satisfies

(8.20) bn+1 =−(0, A(n+1),B (n+1))

if A(n+1) is given by the substitution rule (8.3) or bn+1 =−(0, A(n),B (n)) if A(n+1)

is given by (8.4). As part of the inductive proof, we also show that any tail block
τ of A(n+1), τ 6= τ(n+1) satisfies τ ≺ τ(n+1), where τ(n+1) denotes the tail block
of A(n+1) obtained by eliminating the starting block σ(n+1) defined by (8.15) or
(8.16).

Indeed for n = 0, one can check directly that the sets T m,m,...,m,m+1
b

and

T m,m+1,...,m+1
b

satisfy the above equalities using the fact that an “m” digit does
not change the position of the upper vertex, while an “m + 1” digit does not
change the position of the horizontal segment of such a triangular set. Also, for
any tail τ 6= τ(1) of A(1), τ≺ τ(1).

Now, let us assume that T A(n+1)

b obtained from A(n+1) = (A(n), . . . , A(n)︸ ︷︷ ︸
l(n)

,B (n)) is

nonempty and satisfies (8.19) and (8.20). For T A(n+2)

b we look at the two possible
cases:

Case 1 : A(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1)). By Remark 8.7,

b̄n+2 ≤−(0, A(n+2)) =−(0, A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)

,B (n+1)) =: b̂

and

bn+2 ≥−(0, A(n+2),B (n+2)) =−(0, A(n+1), A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,B (n+1)) =: b̃

where b̃ was obtained by applying Lemma 8.1(ii) to the starting block

σ(n+2) = (A(n+1), . . . , A(n+1)︸ ︷︷ ︸
lA(n+1)−1

,σ(n+1))

of A(n+2).
We prove first the other inductive step: any tail block τ of A(n+2), τ 6= τ(n+2)

satisfies τ ≺ τ(n+2). Notice that τ(n+2) = (τ(n+1),B (n+1)). There exists τ′ a tail
block of A(n+1) with the property that

τ= (τ′, A(n+1), . . . , A(n+1)︸ ︷︷ ︸
l

,B n+1), 0 ≤ l ≤ lA(n+1)−1,

or τ = τ′. The latter case holds when τ is just a tail of B (n+1) (which itself is
a tail of A(n+1)). It is possible that τ′ = ;, but in this case τ ≺ τ(n+2) because
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A(n+1) ≺ τ(n+1) by Lemma 8.6. If τ′ 6= ;, we also get that τ≺ τ(n+2) by using the
inductive hypothesis relation τ′ ≺ τ(n+1).

Now we show that the points (b̃−1, b̃) and (b̂−1, b̂) belong to the set T A(n+2)

b .

The point (b̂ − 1, b̂) belongs to T A(n+1)

b so f A(n+1)
b̂ ≤ b̂. If σ is an intermediate

block between A(n+1) and A(n+2), A(n+1) ⊂σ⊂ A(n+2), then

f σ(b̂) =−(0,τ, A(n+2)) ≤−(0, A(n+2)) = b̂.

The inequality is due to the fact that τ is a tail block of A(n+2) obtained by elim-
inating σ, so A(n+2) ≺ τ.

Now we show that f σ(b̃) ≥ b̃/(b̃ + 1) for any intermediate block σ between

A(n+1) and A(n+2). We have that f σ
(n+2)

(b̃) = b̃/(b̃ +1) by Lemma 8.8, and

f σ
(n+2)

(b̃) =−(0,τ(n+2),B (n+2)),

where τ(n+2) = (τ(n+1),B (n+1)). Also f σ(b̃) = −(0,τ,B (n+2)) with τ being the tail
block of A(n+2) obtained by eliminating σ. But τ≺ τ(n+2) as we have just proved,
hence f σ(b̃) ≥ f σ(n+2)(b̃).

In conclusion, any intermediate block σ between A(n+1) and A(n+2) satisfies

b̃/(b̃ +1) ≤ f σ(b̃) ≤ f σ(b̂) ≤ b̂.

Therefore the points (b̃ −1, b̃) and (b̂ −1, b̂) belong to the intermediate set T σ
b

.

This proves the induction step for T A(n+2)

b .

Case 2 : A(n+2) = (A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

). By Remark 8.7,

b̄n+2 ≤−(0, A(n+2)) =−(0, A(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

) =: b̂

and bn+2 ≥ −(0, A(n+1),B (n+1)) =: b̃, where b̃ was obtained by applying Lemma
8.1(ii) to the starting block σ(n+2) =σ(n+1) of A(n+2).

We prove first the other inductive step: any tail block τ of A(n+2), τ 6= τ(n+2),
satisfies τ≺ τ(n+2). There exists τ′ a tail block of A(n+1) with the property that

τ= (τ′,B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
l

), 0 ≤ l ≤ lB (n+1)

(again, using the fact that B (n+1) is a tail block of A(n+1)). Since

τ(n+2) = (τ(n+1),B (n+1), . . . ,B (n+1)︸ ︷︷ ︸
lB(n+1)

)),

we get that τ≺ τ(n+2) by using the inductive hypothesis τ′ ≺ τ(n+1).

Now we show that the points (b̃−1, b̃) and (b̂−1, b̂) belong to the set T A(n+2)

b .

The point (b̂ − 1, b̂) belongs to T A(n+1)

b so f A(n+1)
b̂ ≤ b̂. If σ is an intermediate

block between between A(n+1) and A(n+2) then

f σ(b̂) =−(0,τ, A(n+2)) ≤−(0, A(n+2)) = b̂
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because τ is a tail block of A(n+2) obtained by eliminating σ, so A(n+2) ≺ τ.

Now we show that f σ(b̃) ≥ b̃/(b̃ + 1). We have that f σ
(n+2)

(b̃) = b̃/(b̃ + 1) by
Lemma 8.8, and

f σ
(n+2)

(b̃) =−(0,τ(n+1),B (n+1)), f σ(b̃) =−(0,τ,B (n+1)),

with τ being the end block of A(n+2) obtained by eliminating σ. But τ≺ τ(n+2) as
we have just proved, hence f σ(b̃) ≥ f σ(n+2)(b̃). In conclusion, any intermediate
sequence σ between A(n+1) and A(n+2) satisfies

b̃/(b̃ +1) ≤ f σ(b̃) ≤ f σ(b̂) ≤ b̂.

Therefore the points (b̃ −1, b̃) and (b̂ −1, b̂) belong to the intermediate set T σ
b

.

We proved the induction step for T A(n+2)

b , when A(n+1) is given by (8.3). A

similar argument can be provided for the case when A(n+1) is given by (8.4), so
the conclusion of the theorem is true.

We prove now that each set nonempty set E (ni ) with (ni ) not eventually ape-
riodic sequence is actually a singleton.

THEOREM 8.10. Assume that (ni ) is a not eventually periodic sequence such that
the set E

(ni )
b is nonempty. Then, E

(ni )
b

is a point on the line segment b −a = 1.

Proof. The sequence (ni ) satisfies the recursive relations (8.3) or (8.4). We look
at the set T A(n+1)

b and estimate the length of its lower base. In case (8.3) its
upper vertex is given by (8.19) and its lower base satisfies (8.20). The lower
base is a segment whose right end coordinate is

ar
n+1 =−(0, A(n+1),B (n+1))−1

and left end coordinate is

al
n+1 = f A(n+1)

(−(0, A(n+1),B (n+1)))−1 =−(0,B (n+1))−1.

Hence the length of the lower base is given by

Ln+1 = ar
n −al

n+1 = (0,B (n+1))− (0, A(n+1),B (n+1)).

In case (8.4), the lower base is a segment whose right end coordinate is

ar
n+1 =−(0, A(n),B (n))−1

and the left end coordinate is given by

al
n+1 = f A(n+1)

(−(0, A(n),B (n)))−1 =−(0,B (n))−1.

Hence the length of the lower base is given by

Ln+1 = ar
n+1 −al

n+1 = (0,B (n))− (0, A(n),B (n)).

Notice that in the first case the two continued fraction expansions have in com-
mon at least the block A(n), while in the second case they have in common
at least the block A(n−1). This implies that in both cases Ln+1 → 0 as n → ∞.
Moreover, the bases of the sets T

n1,...,nk

b
have nonincreasing length and we have
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found a subsequence of these bases whose lengths converge to zero. Therefore
the set E

(ni )
b

consists of only one point (b −1,b), where b =−(0,n1,n2, . . . ).

The above result gives us a complete description of the set of exceptions Eb

to the finiteness condition. It is a subset of the boundary segment b = a +1 of
P . Moreover, each set E m

b
is uncountable because the recursive construction

of a nonempty set E
(ni )
b

allows for an arbitrary number of successive blocks A(k)

at step (k+1). Formally, one constructs a surjective map j : E m
b

→NN by associ-

ating to a singleton set E
(ni )
b a sequence of positive integers defined as

j
(
E

(ni )
b

)
(k) = # of consecutive A(k)-blocks at the beginning of (ni ).

The set Eb has one-dimensional Lebesgue measure 0. The reason is that all as-
sociated formal continued fractions expansions of b =−(0,n1,n2, . . . ) have only
two consecutive digits; such formal expansions (0,n1,n2, . . . ) are valid (−1,0)-
continued fractions. Hence the set of such b’s has measure zero by Proposition
2.4. Analogous conclusions hold for Ea. Thus we have the following.

THEOREM 8.11. For any (a,b) ∈ P , b 6= a + 1, the finiteness condition holds.
The set of exceptions E to the finiteness condition is an uncountable set of one-
dimensional Lebesgue measure 0 that lies on the boundary b = a +1 of P .

Now we are able to provide the last ingredient in the proof of part (ii) of the
Main Result:

PROPOSITION 8.12. The strong cycle property is an open and dense condition.

Proof. It follows from Theorems 4.2 and 4.5 that the condition is open. Theo-
rem 8.11 asserts that for all (a,b) ∈ P , b 6= a +1 the finiteness condition holds,
i.e., all we need to show is that if b has the weak cycle property or the (a,b)-
expansions of Sb and T −1b are eventually periodic, then in any neighborhood
of it there is a b with the strong cycle property. For, if b has the weak cycle
property, it is a rational number obtained from the equation f̂ nT mSb = 0, and
any small perturbation of it will have the strong cycle property. Similarly, if the
(a,b)-expansions of Sb and T −1b are eventually periodic, then b is a quadratic
irrationality (see Remark 2.3), and for any neighborhood of b will contain val-
ues satisfying the strong cycle property. A similar argument holds for Sa and
Ta.

9. INVARIANT MEASURES AND ERGODIC PROPERTIES

Based on the finite rectangular geometric structure of the domain Da,b , one
can study the measure-theoretic properties of the Gauss-type map f̂a,b : [a,b) →
[a,b)

f̂a,b(x) =−1/x −b−1/xea,b f̂a,b(0) = 0

and its associated natural extension map F̂a,b : D̂a,b → D̂a,b

(9.1) F̂a,b(x, y) =
(

f̂a,b(x),− 1

y −b−1/xea,b

)
.
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We remark that F̂a,b is obtained from the map Fa,b induced on the set Da,b ∩
{(x, y) | a ≤ y < b} by a change of coordinates x ′ = y , y ′ = −1/x. Therefore the
domain D̂a,b is easily identified knowing Da,b and may be considered its “com-
pactification”.

We present the simple case when 1 ≤ −1/a ≤ b + 1 and a − 1 ≤ −1/b ≤ −1.
The general theory is the subject our paper in preparation [14]. The truncated
orbits of a and b are

La = {a +1, −1/(a +1)}, Ua = {−1/a, −(a +1)/a},

Lb = {−1/b, (b −1)/b}, Ub = {b −1, −1/(b −1)},

and the end-points of the cycles are ca = a/(a +1) and cb = b/(1−b), respec-
tively.

THEOREM 9.1. If 1 ≤−1/a ≤ b+1 and a−1 ≤−1/b ≤−1, then the domain D̂a,b

of F̂a,b is given by

D̂a,b = [a,1−1/b]× [−1,0]∪ [1−1/b, a +1]× [−1/2,0]

∪ [b −1,−1−1/a]× [0,1/2]∪ [−1−1/a,b]× [0,1],

and F̂a,b preserves the Lebesgue equivalent probability measure

dνa,b = 1

log[(1+b)(1−a)]

d x d y

(1+x y)2 .

Proof. The description of D̂a,b follows directly from the cycle relations and the

finite rectangular structure. It is a standard computation that the measure d x d y
(y−x)2

is preserved by Möbius transformations applied to real variables x and y , hence

by Fa,b . If follows that the measure d x d y
(1+x y)2 obtained by the coordinate changes

x ′ = y , y ′ =−1/x is preserved by the transformation F̂a,b given in (9.1). By con-
sidering F̂a,b as a reduction map acting on geodesics (see Remark 1.1), this can
be derived more elegantly by using the geodesic flow on the modular surface
and the Poincaré cross-section maps, as explained in [14]. Moreover, the den-
sity 1/(1+x y)2 is bounded away from zero on D̂a,b and∫

D̂a,b

d x d y

(1+x y)2 = log[(b +1)(1−a)] <∞.

Hence the last part of the theorem is true.

The Gauss-type map f̂a,b is a factor of F̂a,b (projecting on the x-coordinate),
so one can obtain its smooth invariant measure dµa,b by integrating dνa,b over
D̂a,b with respect to the y-coordinate as explained in [2]. Thus, if we know the
exact shape of the set Da,b , we can calculate the invariant measure precisely.

The measure dµa,b is ergodic and the measure-theoretic entropy of f̂a,b can
be computed explicitly using Rokhlin’s formula.
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FIGURE 8. Typical domain D̂a,b for the case studied

THEOREM 9.2. The map f̂a,b : [a,b) → [a,b) is ergodic with respect to Lebesgue
equivalent invariant probability measure

dµa,b = 1

Ca,b

(
χ(a,1−1/b)

1−x
+ χ(1−1/b,a+1)

2−x
+ χ(b−1,−1−1/a)

x +2
+ χ(−1−1/a,b)

x +1

)
d x

where Ca,b = log[(1+b)(1−a)]. The measure-theoretic entropy of f̂a,b is given by

(9.2) hµa,b ( f̂a,b) = π2

3log[(1−a)(1+b)]
.

Proof. The measure dµa,b is obtained by integrating dνa,b over D̂a,b . Ergodic-
ity follows from a more general result concerning one-dimensional expanding
maps (see [2, 24]). To compute the entropy, we use Rokhlin’s formula

hµa,b ( f̂a,b) =
∫ b

a
log | f̂ ′

a,b |dµa,b =−2
∫ b

a
log |x|dµa,b

= −2

Ca,b

(∫ 1−1/b

a

log |x|
1−x

d x +
∫ a+1

1−1/b

log |x|
2−x

d x

+
∫ −1−1/a

b−1

log |x|
x +2

d x +
∫ b

−1−1/a

log |x|
x +1

d x

)
.

Let I (a,b) denote the sum of the four integrals. The function depends smoothly
on a,b, hence we can compute the partial derivatives ∂I /∂a and ∂I /∂b. We get
that both partial derivatives are zero, hence I (a,b) is constant. Using a = −1,
b = 1, we get

I (a,b) = I (−1,1) = 2
∫ 1

0

log |x|
1+x

d x =−π2/6,

and the entropy formula (9.2).
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