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Abstract. The Morse method of coding geodesics on a surface of constant
negative curvature consists of recording the sides of a given fundamental region
cut by the geodesic. For the modular surface with the standard fundamental
region each geodesic (which does not go to the cusp in either direction) is
represented by a bi-infinite sequence of non-zero integers called its geometric
code.

In this paper we show that the set of all geometric codes is not a finite-step
Markov chain, and identify a maximal 1-step topological Markov chain of ad-
missible geometric codes which we call, as well as the corresponding geodesics,
geometrically Markov. We also show that the set of geometrically Markov
codes is the maximal symmetric 1-step topological Markov chain of admissi-
ble geometric codes, and obtain an estimate from below for the topological
entropy of the geodesic flow restricted to this set.

Introduction

Let H = {z = x + iy : y > 0} be the upper half-plane endowed with the
hyperbolic metric, and Γ be a finitely generated Fuchsian group of the first kind.
Oriented geodesics on M = Γ\H, with exception of those which go to a cusp of
M in either direction, can be coded with respect to a fixed Dirichlet fundamental
region F for Γ as follows. The fundamental region F is a polygon with an even
number of sides which are paired by generators of Γ and their inverses, and labeled
accordingly [K1, K2]. Let us denote this generating set by ΓF . Then any oriented
geodesic on M which does not pass through vertices of F—we call such general
position geodesics— can be coded by a bi-infinite sequence of elements from ΓF by
taking inverses of the generators labeling the sides of the fundamental region F cut
by the geodesic. This construction goes back to Morse [M] (see also [K2] and [S1, S3]
for details), and we will refer to these sequences as Morse coding sequences. For
general position geodesics, a coding sequence is periodic if and only if the geodesic is
closed. An ambiguity in assigning a Morse code occurs if a geodesic passes through
a vertex of F : such geodesics have more than one code, and closed geodesics have
non-periodic codes along with periodic ones (see [BiS, GL] for relevant discussion).

For free groups Γ with properly chosen fundamental regions, all reduced (here
it simply means that a generator g does not follow or precede g−1) bi-infinite
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sequences of elements from ΓF are realized as Morse coding sequences of geodesics
on M [S3] but, in general, this is not the case. Even for the classical example of
Γ = PSL(2,Z) with the standard fundamental region

F = {z ∈ H : |z| ≥ 1, |Re z| ≤ 1/2} ,
no elegant description of admissible Morse coding sequences is known and probably
does not exist. Important results in this direction were obtained in [GL], where
the admissible coding sequences were described in terms of forbidden blocks. The
set of generating forbidden blocks found by the authors has an intricate structure
attesting the complexity of the Morse code.

Let us review the Morse coding procedure for this classical case. The boundary
of F consists of four sides: left and right vertical, identified and labeled by T
(T (z) = z + 1) and T−1, respectively, and left and right circular identified and
labeled by S (S(z) = − 1

z
) (see Figure 1). In this case, the Morse coding sequence of

an oriented general position geodesic γ can be represented by a bi-infinite sequence
of non-zero integers. We choose an initial point on the circular part of the boundary
of F and move in the direction of geodesic, assigning a positive number to a block
of consecutive T ’s and a negative number to a block of consecutive T−1’s separated
by S’s. The bi-infinite sequence of non-zero integers

[γ] = [. . . , n−1, n0, n1, n2, . . . ] ,

uniquely defined up to a shift, is called the geometric code of γ. Moving the initial
point in either direction until its return to one of the circular sides of F corresponds
to a shift of the geometric coding sequence [γ].

An oriented geodesic with geometric code [γ] can be lifted to the upper half-plane
H (by choosing the initial point appropriately) so that it intersects

T±1(F ), . . . , T n1(F ), T n1S(F ), . . . , T n1ST n2S(F ), . . .

in the positive direction (the sign in the first group of terms is chosen in accordance
with the sign of n1, etc.) and

S(F ), ST∓1(F ), . . . , ST−n0(F ), . . . , ST−n0ST−n
−1(F ), . . .

in the negative direction [GK].
An oriented geodesic on H (a semicircle or a ray orthogonal to the real axis) con-

nects two points “at infinity” R∪{∞}, which are called its repelling and attracting
end points and will be denoted by u and w, respectively.

A geodesic γ on M is closed, if and only if it is the projection on M of the axis
of a hyperbolic transformation A ∈ PSL(2,Z). In this case, the geometric coding
sequence of a general position geodesic is periodic, and we call the least period
[n1, n2, . . . , nm], defined up to a cyclic permutation, its geometric code. Moreover,
if we choose A such that its axis enters F through the circular boundary, then

A = T n1ST n2S . . . T nmS.

For example, the Morse coding sequence of the closed geodesic shown on Figure 1
is

[T, T, T, T, S, T−1, T−1, T−1, S],

hence the periodic geometric code is [4,−3]. The lift of the geodesic on H shown
with a dashed line is the axis of the transformation G = T 4ST−3S, G(z) = (13z +
4)/(3z + 1).
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Figure 1. The fundamental region and a geodesic on M

The case when a geodesic passes through the corner ρ = 1
2 + i

√
3

2 of F was
described to a great extend in [GL, Section 7]. Such a geodesic has more than one
code obtained by approximating it by general position geodesics which pass near the
corner ρ slightly higher or slightly lower. If a geodesic hits the corner only once it
has exactly two codes. If a geodesic hits the corner at least twice, it hits it infinitely
many times and is closed; if it hits the corner n times in its period, it has exactly
2n+2 codes, i.e. shift-equivalent classes of coding sequences, some of which are not
periodic. Canonical codes considered in [K2] were obtained by the convention that
a geodesic passing through ρ in the clockwise direction exits F through the right
vertical side of F labeled by T (this corresponds to the approximation by geodesics
which pass near the corner ρ slightly higher). According to this convention, the
geometric codes of the axes of transformations A4 = T 4S, A3,6 = T 3ST 6S and
A6,3 = T 6ST 3S are [4], [3, 6] and [6, 3], respectively (see Figures 5, 4, and 7 below).
However, all these geodesics have other codes. For example, the axis of A4 has a
code [2,−1] obtained by approximation by geodesics which pass near the corner
ρ slightly lower (see Figure 3), and two non-periodic codes for the same closed
geodesic are

[. . . , 4, 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] and [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, 4, . . . ].

The main results of this paper are the following. We identify a class of bi-infinite
sequences that are realized as geometric codes (Theorem 1.5) and describe it as a
topological 1-step Markov chain. (Some preliminary results in identifying admissi-
ble geometric codes were obtained by J. Noel and M. Richter while working under
the supervision of the authors of this paper during the REU program in the summer
of 2002.) We also show that the set of all geometric codes is not a finite-step Markov
chain (Theorem 2.6) and that the class of admissible geometric codes found in The-
orem 1.5 is a maximal 1-step transitive topological Markov chain (Theorem 2.4),
and the maximal symmetric 1-step transitive topological Markov chain (Theorem
2.5) in the set of all geometric codes. We call the set of geodesics with geometric
codes identified in Theorem 1.5 geometrically Markov, and the restriction of the
geodesic flow to this set geometrically Markov geodesic flow. In Section 3 we give a
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lower bound for the topological entropy of the geometrically Markov geodesic flow
(Theorem 3.1).

Let us remark that there is another method of coding geodesics which uses the
boundary expansions of the end points of the geodesic at infinity and a certain
“reduction theory”. It was first applied by Artin [Ar] to the modular group (he
used continued fractions for the boundary expansions), used by Hedlund [H], and
developed by Bowen and Series in [BoS] and [S1, S3] for other Fuchsian groups.
Notably, an elegant arithmetic code for geodesics on the modular surface was ob-
tained in [K2, GK] using minus continued fraction expansions of the endpoints,
and it was interpreted via a particular “cross-section” of SM in [GK]. The set of
arithmetic coding sequences was identified in [GK]: in contrast with the set of geo-
metric coding sequences, it is a symbolic Bernoulli system on the infinite alphabet
N+ = {n ∈ Z : n ≥ 2}. This code is a “relative” of Artin’s code. The space of
Artin’s coding sequences is a 1-step Markov chain, and can also be interpreted via
another cross-section as described in [KU] (see also [AF1, AF2]).

We are very glad that this article appears in the collection honoring the achieve-
ments of Yulij Sergeevich Ilyashenko. An outstanding mathematician, he has made
an invaluable contribution into preserving and developing the vitality of the Moscow
mathematical school. The world mathematical community owes a great debt of
gratitude to him.

1. Admissible geometric codes

In this section, we give a sufficient condition for a bi-infinite sequence of in-
tegers to be realized as a geometric code of a geodesic on M . We start with a
preparatory lemma about convergence of “generalized” minus continued fractions.
Although the result might exist in the vast literature on continued fractions and
their generalizations, we were not able to find it in this form, useful for our study.

Lemma 1.1. Let {an}, n = 0, 1, . . . , be a sequence of nonzero integers such that
|ai| = 1 implies ai ·ai+1 < 0 (i.e. the symbol 1 must be followed by a negative integer
and the symbol −1 must be followed by a positive integer). Then the sequence of
rational numbers

rn = (a0, a1, . . . , an) := a0 −
1

a1 −
1

a2 −
1

. . . − 1

an

converges to a real number denoted by (a0, a1, . . . ), and a0 − 1 ≤ (a0, a1, . . . ) ≤
a0 + 1.

Proof. We first assume that |an| ≥ 2 for all n ≥ 1. The proof in this case follows
the lines of the proof for the case of minus continued fractions [K3], where an ≥ 2,
for all n ≥ 1. We define inductively two sequences of integers {pn} and {qn} for
n ≥ −2:

p−2 = 0 , p−1 = 1 ; pn = anpn−1 − pn−2 for n ≥ 0

q−2 = −1 , q−1 = 0 ; qn = anqn−1 − qn−2 for n ≥ 0 .

The following properties are proved by induction (for n ≥ 0):
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(i) 1 = q0 < |q1| < |q2| < · · · < |qn| < . . . ;

(ii) (a0, a1, . . . , an, x) = xpn−pn−1

xqn−qn−1

, for any real number x, |x| ≥ 1;

(iii) pnqn+1 − pn+1qn = 1;
(iv) (a0, 2, . . . , 2) ≤ (a0, a1, . . . , an) ≤ (a0,−2, . . . ,−2).

Properties (i)–(iii) show that rn = pn/qn for n ≥ 0. Moreover, the sequence rn is a
Cauchy sequence because

|rn+1 − rn| =
1

|qnqn+1|
≤ 1

(n+ 1)2
.

Hence rn is convergent. Using property (iv), one has

(a0, 2, 2, . . . ) ≤ (a0, a1, . . . ) ≤ (a0,−2,−2, . . . )

which implies that a0−1 ≤ (a0, a1, . . . ) ≤ a0+1. (We used here that (2, 2, 2, . . . ) = 1
and (−2,−2,−2, . . . ) = −1.)

We return to the general situation, and prove by induction on n that: any
rational rn = (a0, a1, . . . , an) can be rewritten as (b0, b1, . . . , bl), with bi depending
on a0, a1, . . . , an and |bi| ≥ 2 for all i ≥ 1; moreover, if |b0| = 1, then b0 = a0 and
b0 · b1 < 0; also l ≥ [n/2] if |b0| > 1, and l ≥ [(n+ 1)/2] if |b0| = 1.

The proof for the case n = 1 (r1 = (a0, a1)) is immediate: if |a1| ≥ 2 let
b0 = a0 and b1 = a1, if a1 = 1 then b0 = a0 − 1 ≤ −2 and (a0, a1) = (b0);
if a1 = −1, then b0 = a0 + 1 ≥ 2 and (a0, a1) = (b0). Now, suppose that the
statement is true for some n > 1 and let rn+1 = (a0, a1, . . . , an, an+1) be a sequence
satisfying the assumptions of the lemma. Let (b1, b2, . . . , bl+1) be the reduction of
(a1, a2, . . . , an+1), where l ≥ [n/2] if |b1| ≥ 2, and l ≥ [(n+1)/2] if |b1| = 1 (from the
induction hypothesis). Thus (a0, a1, . . . , an+1) = (a0, b1, b2, . . . , bl+1). If |b1| > 1,
then the reduction is complete, b0 = a0, and l+1 ≥ [n/2]+1 ≥ [(n+2)/2]. Suppose
b1 = −1. From the induction hypothesis, b1 = a1 (hence a0 > 0) and b2 > 0. Let
x = (b3, . . . , bl+1). Notice that

(a0, b1, b2, . . . , bl+1) = (a0, b1, b2, x) = a0 −
1

−1 − 1

b2 −
1

x

= a0 + 1 − 1

(b2 + 1) − 1

x

= (a0 + 1, b2 + 1, b3, . . . , bl+1) ,

where a0 + 1 ≥ 2, b2 + 1 ≥ 2. The reduction is now complete and l ≥ [(n+ 1)/2].
An analog reduction can be done for b1 = 1.

Notice that, from the way a sequence rn = (a0, a1, . . . , an) has been rewritten as
(b0, b1, . . . , bl), one obtains a0 − 1 ≤ rn ≤ a0 + 1 if |a0| ≥ 2, rn ≥ 1 if a0 = 1, and
rn ≤ −1 if a0 = 1.

We can prove now that rn = (a0, a1, . . . , an) is a Cauchy sequence. Let ε > 0
and N such that 1/([N/2])2 < ε. Let n > m ≥ N and consider the sequence
rn = (a0, a1, . . . , am, am+1, . . . , an). Rewrite (a0, a1, . . . , am) as (b0, b1, . . . , bl) with
l ≥ [m/2] and let x = (am+1, . . . , an) (|x| ≥ 1). Let pk/qk = (b0, b1, . . . , bk)
(1 ≤ k ≤ l) be defined as in the first part of the proof. Using property (iii) one has

(b0, b1, . . . , bl, x) =
xpl − pl−1

xql − ql−1
,
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hence

|rn − rm| =

∣

∣

∣

∣

xpl − pl−1

xql − ql−1
− pl

ql

∣

∣

∣

∣

=
1

|ql| |xql − ql−1|
≤ 1

|ql|
≤ 1

(l + 1)2
<

1

[m/2]2
< ε .

This shows that {rn} is a Cauchy sequence, hence convergent. The limit (a0, a1, . . . )
satisfies the required inequalities, since each rn does. �

Remark 1.2. If not all ai’s, i ≥ 1 are equal to 2 (or −2), then

(1.1) a0 − 1 < (a0, a1, . . . ) < a0 + 1.

Next we show how fixed points of hyperbolic transformations in PSL(2,Z)
are related to “generalized” minus continued fraction expansions. The expression
(a0, a1, . . . , ak) is used to denote a periodic “generalized” minus continued fraction
expansion, with period (a0, a1, . . . , ak).

Proposition 1.3. Given A ∈ PSL(2,Z), A = T n1ST n2S . . . T nkS with |ni| ≥ 1
(1 ≤ i ≤ k), such that

• if |ni| = 1, then nini+1 < 0;
• not all ni’s are equal to 2 (or −2),

then A is hyperbolic and its fixed points are given by:

w = (n1, n2, . . . , nk) , u =
1

(nk, nk−1, . . . , n1)
.

Proof. It is enough to prove that A fixes u and w and that u 6= w. This would imply
in particular that A is a hyperbolic transformation. By a direct verification we ob-
tain that T nkS(w) = (nk, n1, . . . , nk) and A(w) = (n1, n2, . . . , nk, n1, n2, . . . nk) =
(n1, n2, . . . nk). This proves that A fixes w, and similarly one can show that A
fixes u. Since not all integers n1, n2, . . . , nk are equal to 2 (or −2) we have that
n0 − 1 < w < n0 + 1 and −1 < u < 1, hence w 6= u. Notice also that if
rk = (n1, n2, . . . , nk) (a finite expression as in Lemma 1.1), then An(rk) converges
to w. Therefore, w is the attracting fixed point of A and u must be the repelling
one. �

The following remark will be used several times in the paper.

Remark 1.4. If the sequence [. . . , n−1, n0, n1, n2, . . . ] is a geometric code of a ge-
odesic γ, then [. . . ,−n1,−n0,−n−1,−n−2, . . . ] is a geometric code of the reversed
geodesic, and [. . . ,−n−1,−n0,−n1,−n2, . . . ] is a geometric code of the geodesic
symmetric to γ with respect to the imaginary axis. This is so due to the fact that
the fundamental region F is symmetric with respect to the imaginary axis.

Theorem 1.5.Any bi-infinite sequence of nonzero integers {. . . , n−1, n0, n1, n2, . . . }
such that

(1.2)

∣

∣

∣

∣

1

ni

+
1

ni+1

∣

∣

∣

∣

≤ 1

2
for i ∈ Z

is realized as a geometric code of a geodesic on M .

Proof. Relation (1.2) is equivalent to saying that the pairs {2, p}, {−2,−p}, {p, 2},
{−p,−2} (p ≥ 1), {1, q}, {q, 1}, {−1,−q}, {−q,−1} (q 6= −1,−2), {3, 3}, {−3,−3},
{3, 4}, {−3,−4}, {4, 3}, {−4,−3}, {3, 5}, {−3,−5}, {5, 3}, {−5,−3} are forbidden.

Let x = {. . . , n−1, n0, n1, n2, . . . } be a sequence satisfying (1.2) and assume
without loss of generality that such a sequence is different from the periodic corner
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sequences [4], [−4], [3, 6], [−3,−6], [2,−1], [−2, 1], for which we already know that
they are valid geometric codes. We will prove that for any such sequence x, the
geodesic γ(x) with the end points w(x) = (n1, n2, . . . ) and u(x) = 1/(n0, n−1, . . . )
(we use “generalized” minus continued fractions, here) is a general position geodesic
and has the geometric code [γ(x)] = [. . . , n−1, n0, n1, n2, . . . ].

Since the first return of the geodesic to the circular base of F corresponds to
a shift of the geometric coding sequence, it is enough to prove that γ(x) enters F
through its circular base and then intersects the regions T (F ), T 2(F ), . . . , T n1F , if
n1 > 0 (or T−1(F ), T−2(F ), . . . , T n1(F ), if n1 < 0) before intersecting the circular
base of T n1(F ).

First, notice that if a sequence x = {. . . , n−1, n0, n1, n2 . . . } satisfies (1.2), then

(i) if n1 = 2, then w(x) = (n1, n2, . . . ) > 2 (since n2 ≤ −1 and (n2, n3, . . . ) < 0
by (1.1));

(ii) if n1 = −2, then w(x) = (n1, n2, . . . ) < −2 (n2 ≥ 1 and (n2, n3, . . . ) > 0
by (1.1));

(iii) if |n1| ≥ 3, then |n0|, |n1| ≥ 2, and using (i) and (ii)

(1.3) n1 −
1

2
< w(x) = n1 −

1

(n2, n3, . . . )
< n1 +

1

2
and − 1

2
< u(x) <

1

2
.

The proof proceeds with a detailed analysis of the different values n1 can take.

Case n1 = 1. In this case n2 and n0 are either −1 or −2. Notice that if n2 = −1,
then n3 = 1, 2, and

(n2, n3, . . . ) = (−1, n3, . . . ) > −2 > (−2, 1) = −1 −
√

3 .

Hence

w(x) = (1,−1, n3, . . . ) > 1 − 1

(−2, 1)
= (1,−2) =

1 +
√

3

2
.

If n2 = −2, then n3 ≥ 1. If n3 ≥ 2, then (n3, n4, . . . ) > 2 > (1,−2), and

w(x) = (1,−2, n3, n4, . . . ) > 1 − 1

−2 − 1

(n3, n4, . . . )

> 1 − 1

−2 − 1

(1,−2)

= (1,−2) .

We are left with the case n3 = 1 (and w(x) = (1,−2, 1, n4, . . . )). Repeating induc-
tively the procedure we described above, one obtains that for all sequences starting
with n1 = 1,

w(x) = (1, n2, n3, . . . ) ≥ (1,−2) =: w1,−2 .

A similar argument shows that

w(x) = (1, n2, n3, . . . ) ≤ (1,−1) =
1 +

√
5

2
=: w1,−1 .

With an analog procedure, one can also show that

u(x) =
1

(n0, n−1, . . . )
≤ 1

(−2, 1)
=

1 −
√

3

2
=: u−2,1 ,

and

u(x) ≥ 1

(−1, 1)
=

1 −
√

5

2
=: u1,−1 .

To summarize, we have found the following relations

w1,−2 ≤ w(x) ≤ w1,−1 and u1,−1 ≤ u(x) ≤ u1,−2 .
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This implies that the geodesic γ(x) enters F through its circular base and then
traverses T (F ) before intersecting the circular part of T (F ). Figure 2 illustrates
the situation, with γ(x) situated between the two bounding geodesics on H: one
from u1,−2 to w1,−2, and the other one from u1,−1 to w1,−1. Since γ(x) is different
from the corner geodesic [1,−2], we notice that the segment of γ we study does not
intersect any corners.

F T (F )

u1,−1 u1,−2 w1,−2 w1,−1

Figure 2. Case n1 = 1

F T (F ) T 2(F )

u2,−1 u w0 2 w2,−1

Figure 3. Case n1 = 2

Case n1 = 2. In this case n2 ≤ −1, and n0 ≤ −1. Notice that w(x) > 2 and
u(x) < 0. We aim to prove that

w(x) ≤ (2,−1) = 1 +
√

3 =: w2,−1 and u(x) ≥ 1

(−1, 2)
= 1 −

√
3 =: u2,−1 .

If n2 ≤ −2, then (n2, n3, . . . ) < −2 < (−1, 2), and

w(x) = 2 − 1

(n2, n3, . . . )
< 2 − 1

(−1, 2)
= (2,−1) = w2,−1 .

If n2 = −1, then w(x) = (2,−1, n3, . . . ), and n3 = 1, 2. If n3 = 1, then

(n3, n4, . . . ) = (1, n4, . . . ) < 2 < (2,−1) ,

hence

w(x) = (2,−1, 1, n4, . . . ) < 2 − 1

−1 − 1

(1, n4, . . . )

< 2 − 1

−1 − 1

(2,−1)

= (2,−1).

If n3 = 2, then w(x) = (2,−1, 2, n4, . . . ) and we can do inductively the same
reasoning to conclude that for every sequence starting with n1 = 2, one obtains
w(x) ≥ w2,−1. A similar argument shows that

u(x) =
1

(n0, n−1, . . . )
≥ 1

(−1, 2)
= 1 −

√
3 =: u2,−1 .

Hence, we proved that 2 < w(x) ≤ w2,−1, and u2,−1 ≤ u(x) < 0. This implies
that γ(x) satisfies the requirements specified above: it enters F through its base
and then traverses T (F ) and T 2(F ) before intersecting the base of T 2(F ). Figure 3
illustrates the situation, with γ(x) situated between two geodesics on H: one from
0 to 2, and the other one from u2,−1 to w2,−1. Since γ(x) is different from the
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corner geodesic [2,−1], we notice that the segment of γ we study does not intersect
any corners.

Case n1 = 3. In this case, n2 ≥ 6 or n2 ≤ −2, and n0 ≥ 6 or n0 ≤ −2. Notice that
relation (1.3) implies w(x) < 7/2 and u(x) > −1/2. We aim to prove that

w(x) ≥ (3, 6) =
3 +

√
7

2
and u(x) ≤ 1

(6, 3)
=

3 −
√

7

2
.

If n2 ≤ −2, then w(x) > 3 > (3, 6), and if n2 > 6, then (n2, n3, . . . ) > 6 > (6, 3),
thus w(x) > (3, 6). If n2 = 6, then n3 ≥ 3 or n3 ≤ −2. In the case n3 ≤ −2,
(n2, n3, . . . ) = (6, n3, . . . ) > 6 > (6, 3), hence w(x) > (3, 6). In the case n3 > 3,
(n3, n4, . . . ) > 3 > (3, 6), hence w(x) > (3, 6). It remains to analyze the case
n3 = 3, i.e. w(x) = (3, 6, 3, n4, . . . ). Repeating inductively the same steps, one
concludes that for any sequence starting with n1 = 3,

w(x) = (3, n2, n3, . . . ) ≥ (3, 6) =: w3,6 .

Similarly,

u(x) =
1

(n0, n−1, n−2, . . . )
≤ 1

(6, 3)
=: u3,6 .

Therefore,

w3,6 ≤ w(x) <
7

2
and − 1

2
< u(x) ≤ u3,6 .

Figure 4 illustrates the situation: γ(x) enters F through its base and then it cuts
T (F ), T 2(F ), T 3(F ) before intersecting the base of T 3(F ). Since γ(x) is different
from the corner geodesic [3, 6], we notice that the segment of γ we study does not
intersect any corners.

Case n1 = 4. In this case n2 ≥ 4 or n2 ≤ −2, and n0 ≥ 4 or n0 ≤ −2. A similar
argument as in the previous case, shows that

w4 := 2 +
√

3 = (4) ≤ w(x) <
9

2
and − 1

2
< u(x) ≤ 1

(4)
= 2 −

√
3 =: u4 .

The geometric situation is presented on Figure 5: γ(x) encloses the geodesic from
u4 to w4 whose geometric code is [4] (the corner code corresponding to the axis of
A4 = T 4S).

F T (F ) T 2(F ) T 3(F )

- 1

2 u wu3,6 w3,6
7

2

Figure 4. Case n1 = 3

F T 4(F )

u4 w4- 1

2
u w 9

2

Figure 5. Case n1 = 4



10 SVETLANA KATOK AND ILIE UGARCOVICI

Case n1 = 5. In this case n2 ≥ 4 or n2 ≤ −2, and n0 ≥ 4 or n0 ≤ −2. Hence

3 +
√

3 = 5 − 1

(4)
≤ w(x) <

11

2
and − 1

2
< u(x) ≤ 1

(4)
= 2 −

√
3 .

Figure 6 illustrates this situation: γ(x) encloses the geodesic from 2−
√

3 to 3+
√

3,
intersecting both F and T 5(F ), which can be easily verified. Therefore γ(x) enters
F through its circular base and then it traverses T (F ), T 2(F ), T 3(F ), T 4(F ), T 5(F )
before intersecting the base of T 5(F ).

F
T 5(F )

2−
√

3 3+
√

3- 1

2

u w 11

2

Figure 6. Case n1 = 5

Case n1 = 6. In this case n2 ≥ 3 or n2 ≤ −2, and n0 ≥ 3 or n0 ≤ −2. Hence

w6,3 := 3 +
√

7 = (6, 3) ≤ w(x) <
13

2
and − 1

2
< u(x) ≤ 1

(3, 6)
= 3 −

√
7 =: u6,3 .

Therefore, γ(x) satisfies the required geometric condition, since it encloses the geo-
desic from u6,3 to w6,3 whose geometric code is [6, 3] (the corner code corresponding
to the axis of A6,3 = T 6ST 3S). See Figure 7.

F T 6(F )

u6,3 w6,3- 1

2
u w 13

2

Figure 7. Case n1 = 6
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Case n1 > 6. In this case n2 ≥ 3 or n2 ≤ −2, and n0 ≥ 3 or n0 ≤ −2. Hence

w(x) = (n1, n2, n3, . . . ) = n1 −
1

(n2, n3, n4, . . . )
≥ n1 −

1

(3, 6)

and

u(x) =
1

(n0, n−1, n−2, . . . )
≤ 1

(3, 6)

Therefore,

n1 − (3−
√

7) = n1 −
1

(3, 6)
≤ w(x) < n1 +

1

2
and − 1

2
< u(x) ≤ 1

(3, 6)
= 3−

√
7 .

The geodesic γ(x) is enclosed by the geodesic from −1/2 to n1 + 1/2 and encloses

the geodesic from ū = 3−
√

7 to w̄ = n1 − (3−
√

7). The equation of the semicircle
from ū to w̄ is

(1.4) x2 + y2 = (ū+ w̄)x− ūw̄

By direct calculations, y >
√

3/2 for x = 1/2, and x = n1 − 1/2. Therefore the
geodesic from ū to w̄ enters F through its circular base and then it cuts the regions
T (F ), T 2(F ), . . . , T n1F before intersecting the base of T n1(F ). The same will be
true for γ(x).

The situation when n1 < 0, can be reduced to the previous discussion due to
Remark 1.4. �

Remark 1.6. The class of admissible geometric codes identified in Theorem 1.5
contains the so-called class of positive coding sequences found in [GK]: all bi-infinite
sequences of positive integers [. . . , n−1, n0, n1, n2, . . . ] such that

(1.5)
1

ni

+
1

ni+1
≤ 1

2
for all i ∈ Z .

Following [GK] we call oriented geodesics whose geometric coding sequences are
positive, positive geodesics. It was proved in [GK] that the condition (1.5) is also
necessary for a sequence of positive integers to be an admissible geometric code.

2. Countable topological Markov chains

Let N = {n ∈ Z : |n| ≥ 1}, N Z be the set of all bi-infinite sequences

N Z = {x = {ni}i∈Z : ni ∈ N , i ∈ Z}
endowed with Tykhonov product topology, and σ : N Z → N Z the left shift map
given by {σx}i = ni+1.

Let X0 be the set of admissible geometric coding sequences for general position
geodesics in M , and X be its closure in the Tykhonov product topology. It was
proved in [GL, Theorem 7.2] that every sequence in X is a geometric code of a
unique oriented geodesic in M , and every geodesic in M has at least one and at
most finitely many codes (see some examples in the Introduction). Thus X is a
closed σ-invariant subspace of N Z.

Let us recall the notion of a k-step topological Markov chain defined on the
alphabet N (see for example [KH]).
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Definition 2.1. Given an integer k ≥ 1 and a map τ : N k+1 → {0, 1}, the set

Xτ = {x ∈ N Z : τ(ni, ni+1, . . . , ni+k) = 1 ∀ i ∈ Z}
with the restriction of σ to Xτ is called the k-step topological Markov chain with
alphabet N and transition map τ .

By definition Xτ is a closed σ-invariant subset of N Z. Without loss of generality
we will always assume that the map τ is essential, i.e., τ(n1, n2, . . . , nk+1) = 1 if
and only if there exists a bi-infinite sequence in Xτ containing this (k + 1)–block
{n1, n2, . . . , nk+1}.

The simplest situation is the class of 1-step topological Markov chains which
often are called just topological Markov chains. In this case the transition map τ is
given by a matrix T called transition matrix.

Definition 2.2. A 1-step topological Markov chain XT with a transition matrix
T is called symmetric if T (n,m) = T (m,n) for all n,m ∈ N .

The set of all bi-infinite sequences satisfying relation (1.2) of Theorem 1.5 can
be described as a symmetric 1-step countable topological Markov chain, with the
alphabet N and transition matrix A,

(2.1) A(n,m) =

{

1 if |1/n+ 1/m| ≤ 1/2 ,

0 otherwise .

Notice that XA is a closed σ-invariant subset of N Z and XA ⊂ X . Moreover,
XA is a transitive topological Markov chain, i.e., for any m,n ∈ N there exists a
bi-infinite sequence x = {ni}i∈Z ∈ XA and i < j such that ni = m and nj = n.

Remark 2.3. The set XA is strictly included in the set X . For example, [5, 3,−2]
is an admissible geometric code, obtained as the code of the closed geodesic corre-
sponding to the axis of T 5ST 3ST−2S (see Figure 8).

T−1 T

S S

F

Figure 8. Geometric code [5, 3,−2]

Theorem 2.4. The set XA is a maximal, transitive 1-step countable topological
Markov chain in the set of all geometric codes X.
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Proof. Consider a 1-step Markov chain XĀ ⊂ X , with Ā its (essential) transition
matrix, such that XA ⊂ XĀ. We will show that, under this assumption, A = Ā,
hence XA coincides with XĀ.

Assume that Ā(2, p) = 1, with p ≥ 2. Since Ā(p, q) = 1 and Ā(q, 2) = 1 for q <
−1, this implies that [p, q, 2] is a valid geometric code for any q < −1. Considering
the axis of T pST qST 2S whose end points are w = (p, q, 2) and u = 1/(2, q, p),
notice that, by choosing |q| large enough, the geodesic from u to w does not intersect
the fundamental region F , and moreover, it intersects the regions TS(F ), T (F ),
T 2(F ), . . . , T p−1(F ), T p−1S(F ), in this precise order. Hence its geometric code
must contain the entry p− 1, which contradicts our assumption. Using Remark 1.4
and the fact that the matrix A is symmetric, we also have Ā(p, 2) = 0, Ā(−p,−2) =
0, Ā(−2,−p) = 0 (with p ≥ 2). Indeed, let us show, for example, that Ā(−p,−2) =
0 for p ≥ 2. If Ā(−p,−2) = 1, then [−2, q,−p] would be an admissible code for
q > 1 (since Ā(−2, q) = A(−2, q) = 1 and Ā(q,−p) = A(q,−p) = 1). Then, Remark
1.4 implies that [p,−q, 2] would be also admissible, hence Ā(2, p) = 1. But we have
already proved that Ā(2, p) = 0, hence the contradiction.

Now, assume that Ā(p, 1) = 1, with p ≥ 1. This means that there exists a
geodesic whose geometric code contains the pair {p, 1}: starting from the circular
boundary of F , it intersects the domains T (F ), T 2(F ), . . . , T p(F ) and then hits
the circular boundary of T p(F ). It is impossible for this geodesic to traverse the
region T pST (F )) and then to enter the region T pSTS(F ) (see Figure 9). Hence
the pair {p, 1} is not admissible. Using Remark 1.4 and the symmetry of A, one
also has Ā(1, p) = 0, Ā(−1,−p) = 0 and Ā(−p,−1) = 0 with p ≥ 1.

T p(F )

T pS(F )

T pST (F )

T pSTS(F )

Figure 9. The pair {p, 1} is not admissible

Assume now that Ā(p,−1) = 1, with p ≥ 3. Since Ā(−1, 2) = Ā(2,−2) =
Ā(−2, p) = 1, then the code [p,−1, 2,−2] is admissible and can be obtained by
coding the axis of the matrix T pST−1ST 2ST−2S whose endpoints are given by
u = 1

(−2,2,−1,p)
and w = (p,−1, 2,−2). Following the geodesic from u to w, one

notices that, starting on the circular boundary of F , the geodesic traverses p + 1
images of F consecutively, hence [p,−1, 2− 2] is not a valid geometric code. Hence
Ā(p,−1) = 0 with p ≥ 3. Using Remark 1.4 and the symmetry of A, we also have
Ā(−1, p) = 0, Ā(−p, 1) = 0, and Ā(1,−p) = 0 if p ≥ 3.

Assume now that Ā(p, q) = 1, with {p, q} being one of the pairs {3, 4}, {3, 3},
{3, 5}, {4, 3}, {5, 3}. Since Ā(q, 7) = 1 and Ā(7, p) = 1, the periodic code [p, q, 7]
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would be admissible. But this contradicts the result of [K2] about positive geodesics
(see also Remark 1.6). Thus Ā(p, q) = 0, and also Ā(−p,−q) = 0, by using Remark
1.4.

We have just proved that there is no pair {p, q} such that Ā(p, q) = 1 and
A(p, q) = 0. Therefore, Ā = A, and XA = XĀ, which implies that XA is a maximal
Markov chain in X . �

Theorem 2.5. The set XA is the maximal symmetric 1-step countable topological
Markov chain in the set of all geometric codes X.

Proof. Let XĀ be a symmetric 1-step Markov chain XĀ ⊂ X , with Ā its (essential)
transition matrix. We will show that, under this assumption, A(n,m) = 0 ⇒
Ā(n,m) = 0. If Ā(n,m) = 1 = Ā(m,n), then the periodic sequence [n,m] ∈ XĀ ⊂
X is a valid geometric code. It was proved in [K2] that [2, p] (p ≥ 2), [3], [3, 4], [3, 5]
are not valid geometric codes. We proved in Theorem 2.4 that the periodic codes
[p, 1] (|p| ≥ 3) are not valid, either. Using Remark 1.4, one obtains that Ā(n,m) = 0
if |1/n+ 1/m| > 1/2, hence XĀ ⊂ XA, i.e., XA is the maximal symmetric Markov
chain in X . �

Theorem 2.6. The shift space X of geometric codes is not a finite-step topological
Markov chain.

Proof.1 Suppose that X can be represented as a k-step topological Markov chain
with transition map τ . Since any k-step Markov chain is obviously (k + 1)-step
Markov, we may assume without loss of generality that k is an odd number. Let

ū =
1

(−2, 2)
= 1 −

√
2 ,

w̄ = (3, 4,−8) = 3 − 1

(4,−8)
= 3 − (−4 + 3

√
2) = 7 − 3

√
2 .

One can check that the geodesic from ū to w̄ passes through the left corner of
T 3(F ).

Let k ≥ 1 and consider two periodic sequences of periods given by

A = [3, (4,−8)k, 5,−2, (2,−2)lk] and B = [3, (4,−8)k, 3,−2, (2,−2)lk] ,

where l is a positive integer (to be determined later in the proof) and (4,−8)k and
(2,−2)lk denote the fact that the pairs {4,−8} and {2,−2} are repeated k times
and lk times, respectively. We will show that A is an admissible geometric code,
i.e., the periodic geodesic γA from uA to wA, where

uA =
1

((−2, 2)lk,−2, 5, (−8, 4)k, 3)
and wA = (3, (4,−8)k, 5,−2, (2,−2)lk) ,

is in general position and its geometric code coincides with A. Indeed, the first
entry in the geometric code of γA is 3 because uA is close to ū and wA is close to
w̄, with uA < ū, wA > w̄ (hence γA enters the fundamental domain F through
its circular boundary, traverses F , T (F ), T 2(F ) and T 3(F ) and then it hits the
circular boundary of T 3(F )). For the proof to be complete one needs to consider

1This is a correction of the published proof.
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all geodesic segments in the period of A between two consecutive returns to the
circular base of F . The next shift of γA has end points

u =
1

(3, (−2, 2)lk,−2, 5, (−8, 4)k)
and w = ((4,−8)k, 5,−2, (2,−2)lk, 3) .

Since

0 < u <
1

(3,−2, 2)
=

2 −
√

2

2
,

4 + 3
√

2

2
= (4,−8) < w < 4 +

1

2
,

it encloses the geodesic from 2−
√

2
2 to 4+3

√
2

2 which passes through the right corner
of F , and the corresponding symbol in the coding sequence of γA is 4. All other
shift geodesics have end points satisfying −1/2 < u < 0 and n < w < n + 1/2 (if
the first entry n of w is positive), and 0 < u < 1/2, n − 1/2 < w < n (if the first
entry n of w is negative). Since |n| ≥ 2, one can easily see that such a geodesic
enters F through its circular side and then traverses T (F ), T 2(F ), . . . , T n(F ) if
n > 0 (or T−1(F ), T−2(F ), . . . , T n(F ) if n < 0) before intersecting the circular
side of T n(F ). Therefore, the corresponding symbol in the coding sequence of γA

is n, as required.
For the closed geodesic γB from uB to wB, where

uB =
1

((−2, 2)lk,−2, 3, (−8, 4)k, 3)
and wB = (3, (4,−8)k, 3,−2, (2,−2)lk) ,

the end point uB is close to ū with uB < ū, and wB is close to w̄ with wB < w̄.
Choose l large enough (depending on k) such that uB is closer to ū than wB to w̄.
A direct computation shows that the first entry in the geometric code of γB will be
2 and not 3. Therefore B is not an admissible geometric code. Since we assumed
that the space X of geometric codes is k-step Markov, this implies the existence of a
(k+1)-tuple in the infinite sequence given by B such that τ(ni, ni+1, . . . , ni+k) = 0.
Notice that such a (k + 1)-tuple must contain the symbol “3” from the begin-
ning of the sequence B. Otherwise, by using Theorem 1.5, the periodic sequence
[ni, ni+1, . . . , ni+k] is a valid geometric code (k+1 is even), so τ(ni, ni+1, . . . , ni+k)
must be 1. But any (k+1)-tuple containing the initial “3” appears in the sequence
A, contradicting the fact that A is an admissible code. �

Remark 2.7. The idea of the proof was inspired by the proof of [GL, Theorem 7.3],
where the authors showed that the space of all Morse codes considered over the
alphabet {T, T−1, S} is not a sofic shift space. Their result does not imply directly
that the space we consider—of geometric codes over the infinite alphabet N—is
not a k-step countable Markov chain.

The lifts of oriented geodesics on M to its unit tangent bundle SM are the
orbits of the geodesic flow {gt} on SM . We will conclude this section by providing
a symbolic representation of {gt} as a special flow over the space of all geometric
codes X .

A cross-section is a subset of SM which each geodesic visits infinitely often both
in the future and in the past, therefore it can be identified with the space of all
admissible geometric codes X .

The following is a particular cross-section B which captures the geometric code.
It consists of all unit vectors in SM with base points on the circular sides of
F pointing inside F (see Figure 10), and can be parameterized by (φ, θ), where
φ ∈ [−π/6, π/6] parameterizes the circle arc and θ ∈ [−φ, π − φ] is the angle the
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unit vector makes with the positive horizontal axis in the clockwise direction. The
partition of B corresponding to the geometric code is shown on Figure 11. Its

F

B

θ

φ

Figure 10. Cross section B

C1

C2

C3

C
−3

C
−2

C
−1

...

...

R(C1)

R(C2)

R(C3)

R(C
−3)

R(C
−2)

R(C
−1)

...

...

(π/6,−π/6)

(−π/6, π/6)

(π/6, π − π/6)

(−π/6, π + π/6)

Figure 11. The infinite geometric partition and its image under
the return map
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elements are labeled by the symbols of the alphabet N , B = tn∈NCn, and are
defined by the following condition: Cn = {v ∈ B : n1(v) = n}, i.e., it consists of all
tangent vectors v in B such that the coding sequence x ∈ X of the corresponding
geodesic with this initial vector has its first symbol in the geometric code n1(x) = n.

Boundaries between the elements of the partition shown on Figure 11 correspond
to geodesics going into the corner; the two vertical boundaries of the cross-section
B are identified and correspond to geodesics emanating from the corner. They have
more than one code. For example, the codes [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, 4, . . . ]
and [4] correspond to the point on the right boundary of B between C4 and C3, and
the codes [2,−1] and [. . . , 4, 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] correspond to the point
on the left boundary between C2 and C3 which are identified and are the four codes
of the axis of A4.

Let R : B → B be the first return map. Then n1(R(v)) = n2(v), i.e., the
first return to the cross-section exactly corresponds to the left shift of the coding
sequence x associated to v. This provides a symbolic representation of the geodesic
flow {gt} on SM as a special flow over (X,σ) with the ceiling function f being
the time of the first return to B (see [GK], §2.2 for a similar construction). The
explicit formula for the first return time f(x) is obtained similarly to that in [GK],
Theorem 4:

Theorem 2.8. Let x ∈ X, x = [. . . , n0, n1, n2, . . . ], andw(x) and u(x) be the end
points of the corresponding geodesic γ(x). Then

f(x) = 2 log |w(x)| + log g(x) − log g(σx)

where

g(x) =
|w(x) − u(x)|

√

w(x)2 − 1

w(x)2
√

1 − u(x)2
.

Some results of this section can be illustrated geometrically since the Markov
property of the partition (for exact definition see [Ad], Section 6) is equivalent to
the Markov property of the shift space.

The elements Cn and their forward iterates R(Cn) are shown on Figure 11. Each
Cn is a curvilinear quadrilateral with two vertical and two “horizontal” sides, and
each R(Cn) is a curvilinear quadrilateral with two vertical and two “slanted” sides.
The horizontal sides of Cn are mapped to vertical sides of R(Cn), and the vertical
sides of Cn are stretched across the parallelogram representing B and mapped to
the “slanted” sides of R(Cn).

If n1(v) = n and n2(v) = m for some vector v ∈ B, then R(Cn) ∩ Cm 6= ∅.
Therefore, as follows from Figure 11, in the geometric code 2 cannot be followed
by 1, 2, 3, 4 and 5.

We say that Cm and R(Cn) intersect “transversally” if their intersection is a
curvilinear parallelogram with two “horizontal” sides belonging to the horizontal
boundary of Cm and two “slanted” sides belonging to the slanted boundary of
R(Cn). Notice that for each transverse intersection R(Cn)∩Cm its forward iterate
under R stretches to a strip inside R(Cm) between its two vertical sides.

We also observe that the elements Cm and R(Cn) intersect transversally if and
only if |n| ≥ 2, |m| ≥ 2, and

|1/n+ 1/m| ≤ 1/2,

so the restriction of our partition to the flow-invariant subset of XA identified in
Theorem 1.5 is indeed Markov in accordance with Theorem 7.9 of [Ad].
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3. Topological entropy of the geometrically Markov geodesic flow

Let us denote by Σ the subset of the unit tangent bundle SM , consisting of
vectors in SM tangent to geometrically Markov geodesics, i.e., geodesics whose
codes are in XA. The set Σ is flow invariant and noncompact. Let {gt} be the
geodesic flow on SM , and {gt

|Σ} the restriction of the geodesic flow to Σ. The

definition of topological entropy for a dynamical system with noncompact phase
space adopted in this paper is the supremum of the measure-theoretic entropies
over the set of all Borel invariant probability measures. The following theorem
gives a lower bound estimate for h({gt

|Σ})—the topological entropy of the flow

{gt
|Σ}. Let us recall that h({gt}) = 1, see [GK].

Theorem 3.1. 0.8417 < h({gt
|Σ}).

Proof. The geodesic flow {gt
|Σ} has B ∩ Σ as a cross section. To an initial vector

v ∈ B∩Σ we associate its corresponding geometric code x ∈ XA, and the first return
time of v to B ∩ Σ can be expressed in terms of the end points of the associated
geodesic γ(x) from u(x) = 1/(n0, n−1, . . . ) to w(x) = (n1, n2, . . . ).

Using the fist return time function f(x) (Theorem 2.8), one defines the special
flow φt on the space

Xf
A = {(x, y) : x ∈ XA, 0 ≤ y ≤ f(x)}

by the formula φt(x, y) = (x, y + t), using the identification (x, f(x)) = (σx, 0).
The special flow {φt} and the geodesic flow {gt

|Σ}, are conjugate, hence they have

the same topological entropy. We proceed by finding a lower bound estimate for
h({φt}).

Notice that f(x) is cohomologous to 2 log |w(x)|, therefore we can assume that
f(x) = 2 log |w(x)|, since any two special flows with cohomologous ceiling functions
are topologically conjugate.

The estimates of Theorem 1.5 show that |w(x)| ≥ (1 +
√

3)/2 > 1.3. Hence f(x)
is bounded away from zero, and using Abramov’s formula:

(3.1) h({φt}) = sup
µ∈If (XA)

hµ
∫

XA
fdµ

,

where If (XA) is the set of all σ-invariant probability measures on XA under which
f is integrable, and hµ is the measure-theoretic entropy of the shift map σ on XA

with respect to µ.
In order to estimate h({φt}), we will use a method developed by Polyakov [P],

based on [Sa]. The method requires the countable Markov chain to be a local
perturbation of the full Bernoulli shift (i.e., the number of forbidden transitions
must be finite), and the first return time function f(x) to depend only on the first
coordinate n1(x). In order to have these conditions satisfied, we restrict XA to the

alphabet Ñ = {n ∈ Z : |n| ≥ 3}. Let Ã be the restriction of matrix A to Ñ . Hence
XÃ is a σ-invariant subspace of XA, and a local perturbation of the full Bernoulli

shift on the alphabet Ñ . Let {φ̃t} denote the special flow over (XÃ, f). If x is in
XÃ, then

|w(x)| ≤ |n1(x)| +
∣

∣

∣

1

(n2, n3, . . .)

∣

∣

∣
≤ |n1(x)| +

1

(3, 6)
= |n1(x)| + 3 −

√
7 ≤ c|n1(x)| ,
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where c = 1 + (3 −
√

7)/3 ≈ 1.11808. Let hc be the topological entropy of the
special flow over (XÃ, gc), where gc(x) = 2 log c|n1(x)|. Since f(x) ≤ gc(x), and
using (3.1), we have:

h({gt
|Σ}) = h({φt}) ≥ h({φ̃t}) ≥ hc .

From [P], Theorems 1 and 2, the value hc is the unique positive solution of the
equation Ψc(s) = 1, where

Ψc(s) = ψ1(s) +
(3c)−2sG(s)ψ2(s)ψ3(s)

1 −G(s)ψ4(s)
.

G(s) is related with the Riemann ζ-function by the formula

G(s) = 2 · c−2s

∞
∑

n=6

n−2s = 2 · c−2s

(

ζ(2s) −
n=5
∑

n=1

n−2s

)

and functions ψ1, ψ2, ψ3, ψ4 are given by

ψ1(s) = (c−8s(225−2s + 2 · 180−2s + 144−2s)

− c−6s(75−2s + 48−2s + 2 · 60−2s + 2 · 45−2s + 2 · 36−2s)

+ c−4s(12−2s + 9−2s)/∆(s)

ψ2(s) = ψ3(s) = (c−6s(75−2s + 2 · 60−2s + 48−2s)

− 2 · c−4s(15−2s + 12−2s)

− c−2s(5−2s + 4−2s − 3−2s) + 1)/∆(s)

ψ4(s) = ( − 2 · c−4s(15−2s + 12−2s) + 3−2s · c−2s + 1)/∆(s) .

The denominator ∆(s) satisfies the relation

∆(s) = c−6s(75−2s + 2 · 60−2s + 48−2s)

− c−4s(15−2s + 12−2s) − 2 · c−2s(5−2s + 4−2s) + 1 .

We used the computer algebra software Maple to perform these computations and
obtained hc ≈ 0.84171. �

Acknowledgment. We would like to thank Dan Genin who wrote the initial
version of the Mathematica program for plotting closed geodesics on the modular
surface.

References

[Ad] R. Adler, Symbolic dynamics and Markov partitions, Bull. Amer. Math. Soc. 35 (1998),
no. 1, 1–56.

[Ar] E. Artin, Ein Mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem. Univ.
Hamburg 3 (1924), 170–175.

[AF1] R. Adler and L. Flatto, Cross section maps for geodesic flows, I (the modular surface), in
Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), 103–161, Progr.
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