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Abstract
We study the topological entropy of a two-parameter family of maps related
to (a, b)-continued fraction algorithms and prove that it is constant on a square
within the parameter space (two vertices of this square correspond to well-
studied continued fraction algorithms). The proof uses conjugation to maps
of constant slope. We also present experimental evidence that the topological
entropy is flexible (i.e. takes any value in a range) on the whole parameter
space.
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1. Introduction

The dynamics of piecewise monotone interval maps, and in particular their topological entropy
and conjugation to maps of constant slope, has been a rich area of investigation, going back
to fundamental work of Parry [24]. See also the monographs [4, 11] and references therein.
Within this class of interval maps, a considerable amount of work has been done for unimodal
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maps. Boundary maps associated to co-compact Fuchsian groups (see [1]) provide an import-
ant family of piecewise monotone examples with multiple discontinuity points. In this paper,
we study the topological entropy of a two-parameter family of boundary maps fa,b : R→ R,
where R= R∪{∞}, associated to the (not co-compact) modular group PSL(2,Z). These
transformations were introduced in [17] and are given by

fa,b(x) :=


x+ 1 if x< a

−1
x

if a⩽ x< b

x− 1 if x⩾ b,

(1)

where the parameters a,b belong to the set

P := {(a,b) ∈ R2 |a⩽ 0⩽ b, b− a⩾ 1,−ab⩽ 1}.

Although we do not focus on number-theoretic applications in this paper, the maps fa,b can
be used to construct continued fraction expansions: for any x ∈ R,

x= n0 −
1

n1 −
1

n2 −
1

n3 − ·· ·

:= bn0,n1,n2, . . .ea,b,

where |nk| is the number of iterates under fa,b in between successive visits to [a,b), and the sign
of nk shows whether the iterates are to the left or right of [a,b). This is explained in more detail,
with the same notations, in [17, section 2]. We refer to fa,b as a ‘slow’ continued fraction map,
in contrast to a Gauss-like map (the first return of fa,b to the interval [a,b)). Several particular
parameter choices correspond to well-studied continued fraction algorithms (see [16, 17] for
references): the case (a,b) = (−1,1) corresponds to regular (plus) continued fractions with
alternating signs for digits (it is also related to a method of symbolically coding the geodesic
flow on the modular surface following Artin’s pioneering work), and the case (a,b) = (− 1

2 ,
1
2 )

gives the ‘nearest-integer’ continued fractions considered first by Hurwitz. These two cases
play a pivotal role in section 2.2. The case (a,b) = (−1,0) is also noteworthy, corresponding
to the classical minus (also called backwards) continued fractions; this case will be mentioned
again in section 3.

The notion of topological entropy was introduced by Adler, Konheim, and McAndrew
in [3]. Their definition used covers and applied to compact Hausdorff spaces; Dinaburg [12]
and Bowen [7] gave definitions involving distance functions and separated sets, which are
often more suitable for calculation. While these formulations of topological entropy were ori-
ginally intended for continuous maps acting on compact spaces, Bowen’s definition can actu-
ally be applied to piecewise continuous, piecewise monotone maps on an interval, as explained
in [22]. The most convenient definition of topological entropy for piecewise continuous piece-
wise monotone maps is

htop( f) = lim
n→∞

log(#of laps of f n)
n

,

where a lap is a maximal interval of monotonicity for a function [4, 21]. In [22] it is shown
that this agrees with Bowen’s definition of topological entropy. When a map isMarkov, i.e. it
admits a finite Markov partition (see [14, chapter 1.9]), its topological entropy can be found
explicitly as the log of the spectral radius (the maximum absolute value of the eigenvalues) of
the associated transition matrix.

2895



Nonlinearity 36 (2023) 2894 A Abrams et al

Figure 1. Plots of fa,b and f̃a,b for a=− 4
5 ,b=

2
5 .

As a one-dimensional map onR, each fa,b is piecewise continuous and piecewise monotone.
The map

k(x) :=
x

1+ |x|

is a homeomorphism from R to [−1,1]/∼ with ±1 identified; for convenience, we will write
only [−1,1] and deal with interval maps, although the results and proofs could all be done on
a circle. To make our notation more uniform, we conjugate the standard generators

T(x) := x+ 1 and S(x) :=−1
x

of the modular group PSL(2,Z) to

T̃ := k ◦T ◦ k−1 and S̃ := k ◦ S ◦ k−1

(see figure 6 on page 6) and conjugate our continued fraction map fa,b : R→ R to the
map f̃a,b : [−1,1]→ [−1,1],

f̃a,b(x) := k ◦ fa,b ◦ k−1(x) =


T̃(x) if − 1⩽ x< a

1−a

S̃(x) if a
1−a ⩽ x< b

1+b

T̃−1(x) if b
1+b ⩽ x⩽ 1,

(2)

thus obtaining a piecewise monotone map with two discontinuity points k(a) and k(b), see
figure 1 (note that on the right, k(a) =− 4

9 and k(b) = 2
7 ).

In this paper, we prove the following ‘entropy plateau’ result:

Theorem 1. For any (a,b) ∈ S = [−1,− 1
2 ]× [ 12 ,1]⊂ P , the topological entropy of f̃a,b (and,

therefore, of fa,b) is log( 1+
√
5

2 ).

The ‘golden square’S = [−1,− 1
2 ]× [ 12 ,1]⊂ P is highlighted in figure 2. Note that this sub-

set contains (uncountably many) parameters for which f̃a,b does not admit a Markov partition,
and our entropy formula holds for these maps as well. Also note that maps from this family
are not necessarily topologically conjugate to each other because the combinatorial structure
of the orbits of the discontinuity points can differ (see [17, section 4]).
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Figure 2. The parameter space P , with the ‘golden square’ S shaded.

Remark 2. For a special family of piecewise affine maps with one discontinuity point, an
entropy plateau phenomenon was investigated by Bruin, Carminati, Marmi, and Profeti [9] and
by Cosper and Misiurewicz [10] (they call it ‘entropy locking’). Both papers follow numerical
simulations from Botella-Soler et al [6]. Our maps f̃a,b are piecewise monotone and have two
discontinuity points, so their methods do not readily apply here.

Remark 3. In [18, sections 6 and 7], the authors obtained an absolutely continuous invariant
probability measure for the first return (Gauss-like) map of fa,b to [a,b). With respect to this

measure, the entropy of the Gauss-like map is 1
Ka,b

π2

3 [18, theorem 6.2], where Ka,b is the

measure of the domain of the natural extension (which is finite). By lifting this measure to R,
one obtains an infinite invariant measure for fa,b : R→ R, so the classical notion of measure-
theoretic entropy does not apply to fa,b. It is an almost immediate consequence of [18, theorem

6.2] that the ‘Krengel entropy’ (see [20]) of fa,b is π2

3 for all (a,b) ∈ P .

2. Proof of main result

The proof of theorem 1 uses results about conjugacy to piecewise continuous maps with con-
stant slope (see [5]). Specifically, we prove that the maps f̃−1,1 and f̃−1/2,1/2 are conjugate to

piecewise linear maps with constant slope 1+
√
5

2 using the same conjugacy. We then show that

this conjugacy will also conjugate any f̃a,b with (a,b) ∈ [−1,− 1
2 ]× [ 12 ,1] to a map with con-

stant slope 1+
√
5

2 . A similar argument was first used by the authors in [1] for maps related to
co-compact Fuchsian groups. An important ingredient of this approach is a symbolic ‘recod-
ing’ process, addressed in lemma 7 below. The recoding in this paper turns out to be less
intricate than the corresponding recoding in [1, appendix A].

2.1. Conjugation to maps of constant slope

In [24], following his seminal work [23], Parry proved that a continuous, piecewise monotone,
strongly transitive interval map with positive topological entropy is conjugate to a constant
slope map. In [5], following [4], Alsedà and Misiurewicz generalized this to a semi-conjugacy
result for piecewise continuous, piecewise monotone interval maps that are not necessarily
transitive. For the present paper, we need only the original results of Parry.
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Theorem 4 ([24, theorem 5]). Let I be a compact interval and let g : I→ I be a piecewise con-
tinuous, piecewise monotone, strongly4 transitive map with positive topological entropy h> 0.
There exists an increasing homeomorphism ψ : I→ I conjugating g to a piecewise continuous
map with constant slope eh.

In the case where f̃a,b is Markov, the conjugacy ψa,b can be obtained by the classical con-
struction due to Parry [24] and used in the proof of [5, lemma 5.1]. We define the probability
measure ρa,b on the shift space Xa,b ⊂ {1, . . . ,N}N as follows: let λ,v (possibly depending on
a,b) be the maximal eigenpair for the Markov transition matrix Ma,b; for an (a, b)-admissible
finite sequence (ω0, . . . ,ωn) (that is, for which (Ma,b)ωi,ωi+1 = 1 for i = 0, . . . ,n− 1), we denote
a symbolic cylinder of rank n+ 1 as

Ca,b(ω0, . . .,ωn) :=
{
ω′ ∈ Xa,b |ω′

i = ωi ∀ 0⩽ i ⩽ n
}

and define the measure ρa,b of this cylinder to be

ρa,b
(
Ca,b(ω0, . . .,ωn)

)
=
vωn

λn
. (3)

The measure ρa,b is equivalent to the shift-invariant ‘Parry measure’ (the measure of max-
imal entropy; see [23, 24]). The measure ρa,b is not shift-invariant but has the ‘expanding
property’

ρa,b(σa,b(C)) = λ · ρa,b(C)
for all cylinders C on (Xa,b,σa,b).

Using the measure ρa,b, one constructs the push-forward Borel probability measure ρ ′
a,b

on [−1,1] given by

ρ′a,b(E) = ρa,b
(
ϕ−1
a,b(E)

)
for Borel E⊂ [−1,1],

where ϕa,b : Xa,b → [−1,1] is the (essentially bijective) symbolic coding map, that is,
ϕa,b(ω) =

⋂∞
i=0 f̃

−i
a,b(Iωi). The conjugacy ψa,b : [−1,1]→ [−1,1] is given by

ψa,b(x) :=−1+ 2 · ρ ′
a,b

(
[−1,x]

)
. (4)

The presence of −1 and 2 in the formula (4) comes from our use of [−1,1] as the domain
for f̃a,b.

2.2. Artin and Hurwitz parameters

We consider two particular parameter choices: the ‘Artin’ case (a,b) = (−1,1) and the
‘Hurwitz’ case (a,b) = (− 1

2 ,
1
2 ). From now on, we abbreviate f̃A = f̃−1,1, ψA = ψ−1,1, etc and

f̃H = f̃−1/2,1/2, ψH = ψ−1/2,1/2, etc.

The maps f̃A and f̃H are each piecewise monotone, piecewise continuous, and Markov with
respect to the same partition {I1, . . . , I8} of the interval [−1,1] (see figure 3):

I1 =
[
−1,− 2

3

]
, I2 =

[
− 2

3 ,−
1
2

]
, I3 =

[
− 1

2 ,−
1
3

]
, I4 =

[
− 1

3 ,0
]
,

I5 =
[
0, 13

]
, I6 =

[
1
3 ,

1
2

]
, I7 =

[
1
2 ,

2
3

]
, I8 =

[
2
3 ,1

]
.

The associated Markov diagrams are shown in figure 4.

4 A map f : X→ X is strongly transitive if for any nonempty open set U⊂ X there exists n such that
∪n

i=1 f
i(U) = X.

For piecewise monotone interval maps, transitivity implies strong transitivity [13].
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Figure 3. Plots of f̃A = f̃−1,1 and f̃H = f̃−1/2,1/2 with their (shared) Markov partition
of [−1,1].

Figure 4. Markov structure of Artin and Hurwitz admissibility.

From the Markov diagrams, we construct the pair of 8× 8 transition matrices

MA =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


, MH =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


. (5)

Notice that the two matrices are very similar, the only difference being that the transitions
I3 → I7 and I6 → I2 in MA are replaced by I3 → I5 and I6 → I4 in MH .

Using these matrices, we can now prove that f̃A and f̃H satisfy the transitivity condition of
theorem 4: by [14, proposition 1.9.9] aMarkov shift is transitive (in fact, topologically mixing)
if some finite power of its transition matrix has all positive values, and indeedM 6

A andM
6
H have

all positive values.
By direct computation, the characteristic polynomials of MA and MH are

(x2 − x− 1)(x2 − x+ 1)x4 and (x2 − x− 1)(x2 − x+ 1)(x4 − 1),
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respectively, and so both have the same dominant eigenvalue

λ=
1+

√
5

2
.

The corresponding (right probability) eigenvector for both matrices is

v=
1

6λ+ 4
(λ+1, λ, 1, λ, λ, 1, λ, λ+1). (6)

To aid in later proofs, we denote Ak = f̃A|Ik and Hk = f̃H|Ik . The following lemma can be
proven by looking at the graphs in figure 3 or by a careful analysis of (2) on the intervals
I1, . . . , I8:

Lemma 5. The maps A1,A2,H1,H2,H3 coincide with T̃. The maps A3,A4,A5,A6,H4,H5 coin-
cide with S̃. The maps A7,A8,H6,H7,H8 coincide with T̃−1. In particular, if k /∈ {3,6}, then
Ak = Hk.

By theorem 4 there exists a (unique) increasing homeomorphism ψA : [−1,1]→ [−1,1]
conjugating f̃A to a map

ℓA := ψA ◦ f̃A ◦ψ−1
A

with constant slope λ= 1+
√
5

2 , and there exists a (unique) increasing homeomorphism ψH :

[−1,1]→ [−1,1] conjugating f̃H to a map

ℓH := ψH ◦ f̃H ◦ψ−1
H

also with constant slope 1+
√
5

2 .
We will prove that the maps ψA and ψH (each obtained by Parry’s construction) coincide:

Theorem 6. For all x ∈ [−1,1], ψA(x) = ψH(x).

Equivalently, ρ ′
A(J) = ρ ′

H(J) for all intervals J⊂ [−1,1]. It is sufficient to take J to be a cyl-
inder interval: given an (a, b)-admissible sequence ω = (ω0,ω1, . . .,ωn) with ωi ∈ {1, . . .,8},
we define the corresponding (a, b)-cylinder interval of rank n+ 1 as

Ia,b(ω0,ω1, . . .,ωn) := Iω0 ∩ f̃−1
a,b (Iω1)∩ ·· · ∩ f̃−n

a,b (Iωn)

= Iω0 ∩ f̃−1
a,b (Ia,b(ω1, . . .,ωn)).

(7)

If every A-admissible word ω = (ω0, . . . ,ωn) had a corresponding H-admissible τ =
(τ0, . . . , τn) with IA(ω) = IH(τ) and vωn = vτn then theorem 6 would be proven. In fact, we
do not need to show IA(ω) = IH(τ) for all A-admissible ω, as we now explain.

If ωn ∈ {3,4,5,6}, then we use the unique Markov transitions 3→ 7, 4→ 8, 5→ 1 and
6→ 2 to instead consider

IA(ω0, . . . ,ωn−1,3) = IA(ω0, . . . ,ωn−1,3,7),

IA(ω0, . . . ,ωn−1,4) = IA(ω0, . . . ,ωn−1,4,8),

IA(ω0, . . . ,ωn−1,5) = IA(ω0, . . . ,ωn−1,5,1),

IA(ω0, . . . ,ωn−1,6) = IA(ω0, . . . ,ωn−1,6,2).

Therefore we can assume ωn /∈ {3,4,5,6}.

Lemma 7. If ω = (ω0, . . . ,ωn) is A-admisisble and ωn ∈ {1,2,7,8}, then there exists an H-
admissible word τ = (τ0, . . . , τn) such that ω0 = τ0 and IA(ω) = IH(τ). Moreover, if ωn ∈
{1,8}, then ωn = τn; if ωn = 2, then τn ∈ {2,4}; and if ωn = 7, then τn ∈ {5,7}.
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Figure 5. Rank-two cylinder intervals for f̃A (top) and f̃H (bottom) coincide.

Proof. Recall the notation Ak and Hk from lemma 5. From the monotonicity of Ak and Hk, we
can avoid the intersection in the definition (7) and instead calculate

IA(ω0,ω1, . . .,ωn) = A−1
ω0

(IA(ω1, . . .,ωn)) if (ω0,ω1, . . .,ωn)is A-admissible

and

IH(τ0, τ1, . . ., τn) = H−1
τ0 (IH(τ1, . . ., τn)) if (τ0, τ1, . . ., τn)is H-admissible.

With these observations, in figure 5 we have the following correspondence between the
rank two cylinder intervals of the two maps.

The matching IA(1,1) = IH(1,1) and IA(1,2) = IH(1,2) and similarly for (2,3), (2,4),
(4,8), (5,1), (7,5), (7,6), (8,7), and (8,8) are all trivial due to lemma 5. One can also check
directly that

IA(3,7) = IH(3,5) = I3 and IA(6,2) = IH(6,4) = I6.

We have the following identities:

IA(3,7,5,1) = IH(3,5,1,1),

IA(3,7,6,2) = IH(3,5,1,2),

IA(6,2,3,7) = IH(6,4,8,7),

IA(6,2,4,8) = IH(6,4,8,8).

These all follow from the classical relationship (TS)3 = Id on the generators of PSL(2,Z).
An equivalent formulation is S̃T̃S̃= T̃−1S̃T̃−1. By definition,

IA(3,7,5,1) = A−1
3 A−1

7 A−1
5 (I1) = S̃T̃S̃(I1)

and

IH(3,5,1,1) = H−1
3 H−1

5 H−1
1 (I1) = T̃−1S̃T̃−1(I1);

because S̃T̃S̃= T̃−1S̃T̃−1, we have IA(3,7,5,1) = IH(3,5,1,1). The other three relations are
proved similarly. Alternatively, this can be proved by tracking the image of I1 under the relevant
maps shown in figure 6.

Notice that the recoding relations do not affect the first and fourth digit. This means that
the recoding process will be localized to these words of length 4, and it does not affect the
symbols on either side of the block.

We refer to the four words

3751, 3762, 6237, 6248

as ‘exceptional blocks’. Our goal is to prove lemma 7 by induction on the number ℓ of excep-
tional blocks that occur in ω.
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Figure 6. Graphs of T̃ (left), S̃ (middle), and T̃−1 (right), each with the Markov shared
partition for Artin and Hurwitz maps.

Base case. If there are no exceptional blocks in (ω0,ω1, . . .,ωn), then the sequence
(ω0,ω1, . . .,ωn−2) will not contain the symbols 3 or 6 and so by the final statement of
lemma 5 we have

IA(ω0,ω1, . . .,ωn) = A−1
ω0

· · ·A−1
ωn−2

(IA(ωn−1,ωn))

= H−1
ω0

· · ·H−1
ωn−2

(IH(ωn−1, τn))

= IH(ω0,ω1, . . .,ωn−1, τn),

where τ n is determined from the matching IA(ωn−1,ωn) = IH(ωn−1, τn) (see figure 5).
Induction step.Now assume that the statement of lemma 7 is true for anyA-admissible finite

sequence ω that contains ℓ > 0 exceptional blocks; we will prove that the statement holds for
any word (ω0,ω1, . . .,ωn) that contains ℓ+ 1 exceptional blocks.

Let k be the indexwhere the first exceptional block appears. From the induction assumption,

IA(ωk+3,ωk+4, . . .,ωn) = IH(τk+3, τk+4, . . ., τn),

where τk+3 = ωk+3; if ωn ∈ {1,8} then ωn = τn. If ωn = 2 then τn ∈ {2,4}; and if ωn = 7 then
τn ∈ {5,7}.

Now, finally, we have

IA(ω) = IA(ω0,ω1, . . .,ωk−1,ωk,ωk+1,ωk+2,ωk+3, . . .,ωn)

= A−1
ω0

· · ·A−1
ωk−1

A−1
ωk
A−1
ωk+1

A−1
ωk+2

(IA(ωk+3, . . .,ωn))

= H−1
ω0

· · ·H−1
ωk−1

H−1
ωk
H−1

τk+1
H−1

τk+2
(IH(ωk+3, . . ., τn))

= IH(ω0,ω1, . . .,ωk−1,ωk, τk+1, τk+2,ωk+3, . . ., τn)

= IH(τ).

With the recoding process (lemma 7) in place, we return to showing that ψA = ψH.

Proof of theorem 6. By the assumptions of lemma 7, it is enough to show that ρ ′
A(IA(ω)) =

ρ ′
H(IA(ω)) forωn ∈ {1,2,7,8}. Fixω = (ω0, . . . ,ωn) and let τ = (τ0, . . . , τn) be the correspond-

ing H-admissible word from lemma 7.
Since ϕA maps the cylinder interval IA(ω) exactly to the symbolic cylinder CA(ω),

ρ′A(IA(ω0, . . .,ωn)) =
vωn

λn
.
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Figure 7. Partially-overlapping graphs of ψ ◦ f̃A ◦ψ−1 (dashed) and ψ ◦ f̃H ◦ψ−1

(solid).

Because IA(ω0, . . .,ωn) = IH(τ0, . . ., τn), and ϕH maps the cylinder interval IH(τ) exactly to
the symbolic cylinder CH(τ), in fact

ρ′H(IA(ω0, . . .,ωn)) = ρ′H(IH(τ0, . . ., τn)) =
vτn
λn
.

The claim ρ ′
A(IA(ω)) = ρ ′

H(IA(ω)) is now equivalent to vωn = vτn , and this is easily checked
using (6) and the final parts of lemma 7. If ωn ∈ {1,8} then ωn = τn (so trivially vωn = vτn). If
ωn = 2 then τn ∈ {2,4}, and since v2 = v4 this is also fine. Similarly, if ωn = 7 then τn ∈ {5,7}
is sufficient because v5 = v7.

Having proven that ρ ′
A(IA(ω)) = ρ ′

H(IA(ω)) for a generating set of intervals IA(ω), and using
the definition (4), we conclude that ψA = ψH.

2.3. Proof of theorem 1

SinceψA = ψH by theorem 6, we will now denote these twomaps by simplyψ. Themap f̃H acts
as T̃ on the interval k([−∞,− 1

2 ]) = [−1,− 1
3 ], so by construction, ψ ◦ T̃ ◦ψ−1 is linear (with

slope λ= 1+
√
5

2 , which we now refrain from repeating) on the interval ψ([−1,− 1
3 ]). Similarly,

f̃A acts as S̃ on k([−1,1]) = [− 1
2 ,

1
2 ] and so ψ ◦ S̃ ◦ψ−1 is linear on ψ([− 1

2 ,
1
2 ]). And because

f̃H acts as T̃−1 on [ 13 ,1], we know that ψ ◦ T̃−1 ◦ψ−1 is linear on ψ([ 13 ,1]). See figure 7.
The map ψ therefore satisfies the following four conditions:

(i) for x ∈ ψ([−1,− 1
3 ]), ψ(T̃(ψ

−1(x)) = λx+ c1;

(ii) for x ∈ ψ([− 1
2 ,0]), ψ(S̃(ψ

−1(x)) = λx+ c2;

(iii) for x ∈ ψ([0, 12 ]), ψ(S̃(ψ
−1(x)) = λx+ c3;

(iv) for x ∈ ψ([ 13 ,1]), ψ(T̃
−1(ψ−1(x)) = λx+ c4.
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In fact, one can calculate c1 = λ− 1,c2 = 1,c3 =−1,c4 = 1−λ, but these are not neces-
sary for the proof.

Let (a,b) ∈ [−1,− 1
2 ]× [ 12 ,1] be arbitrary. The map f̃a,b acts as T̃ on the interval

[−1,k(a)]⊂ [−1,− 1
3 ],

and sinceψ ◦ T̃ ◦ψ−1 is linear on all ofψ([−1,− 1
3 ]) by (i), we have thatψ ◦ f̃a,b ◦ψ−1 is linear

on ψ([−1,k(a)])⊂ ψ([−1,− 1
3 ]).

Similarly, ψ ◦ f̃a,b ◦ψ−1 is linear on ψ([k(a),0]) because f̃a,b acts by S̃ on [k(a),0]⊂ [− 1
2 ,0]

and, by (ii), ψ ◦ S̃ ◦ψ−1 is linear on all of all ψ([− 1
2 ,0]). Likewise, ψ ◦ f̃a,b ◦ψ−1 is linear on

ψ([0,k(b)])⊂ ψ([0, 12 ]) by (iii) and on ψ([k(b),1])⊂ ψ([− 1
3 ,1]) by (iv).

Since f̃a,b is conjugate to a map with constant slope λ on all of [−1,1], we have htop(̃ fa,b) =

log(λ) = log( 1+
√
5

2 ) by [21]. □

3. Further remarks and open questions

3.1. Slow Gauss map

Let g : [0,∞]→ [0,∞] be the classical ‘slow Gauss map’

g(x) =

{
1/x if 0⩽ x< 1

x− 1 if x⩾ 1,

which is closely related with a regular (plus) continued fraction expansion: for 0< x< 1,

x=
1

n1 +
1

n2 +
1

n3 + · · ·

:= [0,n1,n2,n3, . . .]

where the digits nk are the number of consecutive iterates under g that are in [1,∞] between
visits to [0,1). Let g̃ : [0,1]→ [0,1] be the compactified version, g̃= k ◦ g ◦ k−1, where k :
[0,∞]→ [0,1] is k(x) = x

1+x . In [8], Bowen considered measure-theoretic properties of these
two maps.

The map g̃ : [0,1]→ [0,1] is semi-conjugate to f̃−1,1 : [−1,1]→ [−1,1] via the absolute
value function abs : [−1,1]→ [0,1], that is g ◦ abs= abs ◦ f̃−1,1, so g is a topological factor of
f̃−1,1. Although in general the topological entropy of a factor is only less than or equal to the
topological entropy of the map, in this case we have equality of topological entropies: the map
g̃ has the Markov partition {I1, I2}= {[0, 12 ], [

1
2 ,1]} with transition matrix

(
0 1
1 1

)
, which imme-

diately gives that htop(g̃) = log( 1+
√
5

2 ). The reason for the equality is a simple relationship
between the regular continued fraction expansion and a (−1,1)-continued fraction expansions:
for 0< x⩽ 1,

x= [0,n1,n2, . . .] = b0,−n1,n2,−n3, . . .e−1,1.

3.2. Conjectures about entropy

Outside of the square S = [−1,− 1
2 ]× [ 12 ,1], there are many unanswered questions about the

behavior of htop( fa,b). Using Markov partitions, we can calculate explicit entropy values for
many rational values (a, b), and from these we have created figure 8.
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Figure 8. Numerical plot of topological entropy (plateau is (a,b) ∈ S).

While in section 2 we focused on the parameter choices (−1,1) and (− 1
2 ,

1
2 ), the map for

the case (a,b) = (−1,0) has also been studied independently, as it corresponds to classical
backwards continued fractions [2, 15]. Additionally, according to our numerical tests, this
parameter appears to give the minimum possible value for htop( fa,b).

We can directly calculate the value

htop(f−1,0) = log(κ)≈ 0.382,

where κ is the spectral radius of

M−1,0 =


1 1 0 0
0 0 0 1
0 1 0 0
0 0 1 1


and satisfies κ3 −κ2 − 1= 0.

Conjecture 1 (Flexibility).

(i) If (a,b) ∈ P then log(κ)⩽ htop( fa,b)⩽ log( 1+
√
5

2 ).

(ii) For any h ∈ [log(κ), log( 1+
√
5

2 )], there exists (a,b) ∈ P with htop( fa,b) = h.

Conjecture 2 (Continuity and monotonicity).

(i) The function (a,b) 7→ htop( fa,b) is continuous.
(ii) For fixed b⩽ 1

2 , the function a 7→ htop( fa,b) is monotone non-decreasing.

There are some line segments in figure 8 but outside of S that appear to be horizontal, a
phenomenon noticed in [6, 9] for some one-parameter families of maps. In figure 9 this is much
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Figure 9. Plots of entropy for some fixed values of b.

clearer: each curve has a flat section toward the right. For each value of b, the flat section of
the curve occurs for a ∈ [−1,− 1

b+1 ], so this is described explicitly in conjecture 3.

Conjecture 3. If b⩽ 1
2 and−1⩽ a⩽− 1

b+1 then htop( fa,b) = htop( f−1,b). That is, htop( fa,b) is

independent of a in the region {(a,b) ∈ P |b⩽ 1
2 ,−1⩽ a⩽− 1

b+1}.

One method to prove conjecture 3 would be to prove that ψ−1,b = ψ−1/(b+1),b for each
b ∈ [0,1]. For some individual (rational) values of b, the authors have found a recoding from
(−1,b) to (− 1

b+1 ,b), similar to the recoding from (−1,1) to (− 1
2 ,

1
2 ) presented in section 2.2.

However, it is not clear how to generalize those recodings to other b ∈ [0, 12 ].
Although f−1,1 (Artin) and f−1,0 are well-studied, we do not have any explicit formula for

htop( f−1,b) in general; numerically calculated values are shown in figure 10. This figure also
shows entropy of fb−1,b, the one-parameter family along the boundary ofP that is conceptually
similar to the so-called Japanese continued fractions. Note that the two curves in figure 10
intersect only at (0, log(κ)) and ( 12 , log(

1+
√
5

2 )); for all 0< b< 1
2 we have (numerically) that

htop( fb−1,b)> htop( f−1,b). Theorem 1 implies that the right half of the htop( f−1,b) curve is flat
because a=−1,b> 1

2 is an edge of the golden square. Also, the symmetry of the htop( fb−1,b)
curve is because fa,b and f−b,−a are conjugate.

3.3. Cycle property (matching) and entropy plateau

In 2019, Bruin, Carminati, Marmi, and Profeti [9] proved that entropy plateau for a one-
parameter family of affine maps of an interval with a single point of discontinuity occurs when
the two orbits of the discontinuity point match after the same number of iterations (a property
called neutral matching). Already in 2010 the authors in [17] proved that the matching for
(a, b)-continued fractions occurs for essentially all (a,b) ∈ P (they called it the cycle prop-
erty): specifically, the parameter a has the cycle property if there exist nonnegative integers
ma and ka such that

fma
a,b(Sa) = f kaa,b(Ta),
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Figure 10. Plots of entropy for one-parameter families.

and, similarly, b has the cycle property if there exist nonnegative integers mb and kb such that

fmb
a,b(T

−1b) = f kba,b(Sb).

In [19] they proved the cycle property for boundary maps associated to Fuchsian groups,
another example of piecewise continuous piecewise monotone maps of the circle. In the (a, b)-
case, the upper and lower cycles may be of arbitrary length while in the Fuchsian case the
cycles are always the same length. In the Fuchsian case we proved ‘entropy rigidity’, that is,
the entropy is constant on the entire parameter space [1]. In the (a, b)-case, we proved entropy
plateau in the golden squareS. In fact, generic (a,b) ∈ S has neutral matching (i.e.ma = ka and
mb = kb), although the lengths can be arbitrary large (this can be proved by carefully following
the analysis of [17, sections 4 and 8]).

It might be possible to prove that htop is constant in the golden square directly from the
neutral matching property. Such a proof would be in the spirit of Bruin et al [9]. In the co-
compact Fuchsian setting of [1, 19] the cycles are always the same length, so this argument,
if possible, would provide alternative proofs of [1, theorem 1] and this paper’s theorem 1
together.
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