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What are Numbers?

Svetlana Katok

Pennsylvania State University

The goal of this seminar was to reveal the concept
of number in modern mathematics. The title was
inspired by Kirillov’s book (1993). My original idea
was to use it as the main source for the seminar,
but unfortunately, it is too sophisticated for the stu-
dents, and I ended up using only his general phi-
losophy of consequent extensions of the notion of
number, which appears in the beginning of this ar-
ticle. The material is presented in a series of prob-
lems with a skeletal framework that provides a con-
text for them. In the seminar, students solved these
problems and worked on projects, individually or in
groups. Solutions and hints to some of these prob-
lems are included in the Appendix.

Introduction

We start with the following chain:

N ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O.

This chain of consequent extensions of the concept
of number you probably know well enough, at least
up to its fourth and fifth members. Symbols of this
chain became standard notation for, respectively,
sets of natural, integer, rational, real, complex num-
bers, quaternions, and Cayley numbers (also known
as octaves). We discuss transitions from one term
of this chain to the next, and show how the ideas
underlying these transitions may lead to different,
sometimes very unexpected and beautiful theories.

The material is divided according to the following
topics. Some of these topics are covered in the group
projects, which are listed prior to the Appendix.

• Arithmetic: from natural numbers to integers,
to rational numbers; arithmetic operations,
groups, rings, fields.

• Analysis: from rational numbers to reals, a
concept of completion, p-adic numbers.

• Rational numbers as an ordered field, a way of
obtaining real numbers via cuts.

• More on real numbers, algebraic and transcen-
dental numbers.

• Algebra: from real to complex numbers, alge-
braically closed fields; commutative, associa-
tive, and division algebras.

• The exceptional position of four algebras: real
numbers, complex numbers, quaternions, and
Cayley numbers—Hurwitz’s Theorem.

The majority of problems included here are devoted
to the theory of p-adic numbers, which are a remark-
able diversion from the above mentioned chain. The
material on which they are based can be found in
the books by Borevich and Shafarevich (1996), Kir-
illov and Gvishiani (1982), and Koblitz (1977). The
material on division and quaternion algebras can
be found Katok (1992). The book by Kantor and
Solodovnikov (1989) was the primary source for the
last topic.

Arithmetic: from N to Z and from

Z to Q; arithmetic operations,

groups, rings, fields

Natural numbers can be added but not always sub-
tracted; integers can be multiplied but not always di-
vided. The urge to overcome these “inconveniences”
leads to the transitions from N to Z, and from Z to
Q.

Let us recall how to make those transitions. We
want to subtract m from n. If m ≥ n, then the
answer is not in N. We denote it by n	m. We want
all axioms of addition to hold in the extended set.
Hence, we have to identify n	m with (n+k)	(m+k)
for all k ∈ N, and also with (n − k) 	 (m − k) for
1 ≤ k < min(m, n).

We see that the symbols n1 	 m1 and n2 	 m2 are
identified if n1 +m2 = n2 +m1. Now let us consider
all expressions

n 	 m, m, n ∈ N

with the given identification. We can add them by
components

(n1 	 m1) + (n2 	 m2) = (n1 + n2) 	 (m1 + m2),

and subtract them by the following rule:

(n1 	 m1) − (n2 	 m2) = (n1 + m2) 	 (n2 + m1).

For instance,

(0 	 0) − (m 	 n) = n 	 m.
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1. Show that the equivalence classes of symbols

{m	 n | m, n ∈ N, n1 	 m1 ∼ n2 	 m2

iff n1 + m2 = n2 + m1}

form a group by addition, and that this group is
isomorphic to Z.

The procedure is completely analogous for the con-
struction of the multiplicative group Q∗ of non-zero
rational numbers starting from a semigroup Z \ {0}.

2. Prove that the equivalence classes of symbols

{m : n | m, n ∈ Z \ {0}, m1 : n1 ∼ m2 : n2

iff m1n2 = m2n1}

form a group by multiplication, and that this group
is isomorphic to Q∗.

In both of these exercises we extended the domain to
obtain a group using the same principle. We intro-
duced new symbols (negative numbers, fractions),
and formed the equivalence classes in such a way
that the laws which held in the original domain con-
tinued to hold in the extended domain. We shall see
equivalence relations very often as we go alone.

3. Which of the following relations are equivalence
relations?

a) Relation of equality of two numbers;

b) relation of similarity of two triangles;

c) relation of order on the real line;

d) relation of linear dependence in a vector space
L of dimension n > 1;

e) relation of linear dependence on the let L∗ =
L \ 0, where L is a vector space.

Analysis: from Q to R; a concept

of completion, p-adic numbers

The real numbers are obtained from rationals by a
procedure called completion. This procedure can be
applied to any metric space, i.e., a space M with a
distance function d on it. A sequence {rn} ∈ M is
called a Cauchy sequence if for any ε > 0 there exists
N > 0 such that n, m > N implies d(rn, rm) < ε. If
any Cauchy sequence in M has a limit in M , then
M is called a complete metric space. If M is not
complete, there exists a metric space M such that

1. M is complete;

2. M contains a subset M0 isometric to M ;

3. M0 is dense in M (i.e., each point in M is a
limit point for M0).

The elements of M are equivalence classes of Cauchy
sequences in M : (two Cauchy sequences xn and yn

are called equivalent if d(xn, yn) → 0).

4. Prove that a metric space is complete if and only
if the intersection of every descending sequence of
closed balls whose radii approach zero consists of a
single point.

Let us apply this construction to the rational num-
bers. We have the usual Euclidean distance between
rational numbers:

(1) d(r1, r2) = |r1 − r2|.

The geometric interpretation of rational numbers as
points on the “number axis” is obviously connected
with this distance. It is easy to construct a Cauchy
sequence of rational numbers which has no limit in
Q:

.1, .1011, .10110111, .1011011101111, . . . .

5. Prove that the rational numbers are represented
by eventually periodic decimal fractions.

On the other hand, any point on the “number axis”
can be represented by an infinite decimal fraction,
and any Cauchy sequence of rational numbers has
a limit that is an infinite decimal fraction. In other
words, the construction of real numbers through infi-
nite decimal fractions is equivalent to the completion
procedure described above. We shall denote the set
of real numbers by R.

6. Prove that the following metric spaces are not
complete, and construct their completions:

1. R with the distance d(x, y) = |arctan x−arctan y|;

2. R with the distance d(x, y) = |ex − ey|.

7. On the set of closed intervals of the real line we
define a distance by the formula:

d([a, b], [c, d]) = |a − c| + |b − d|.

Prove that the obtained metric space is not com-
plete, and find its completion.
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8. On the set {∆} of closed intervals of the real line
we define a distance by the formula:

d(∆1, ∆2) = |∆1| + |∆2| − 2|∆1 ∩ ∆2|.

Prove that the obtained metric space is not com-
plete, and find its completion.

9. Prove that the space of polynomials with real
coefficients R[x] is not complete with respect to the
following distances:

1. d(P, Q) = max[0,1] | P (x) − Q(x) |;

2. d(P, Q) =
∫ 1

0 | P (x) − Q(x) | dx;

3. d(P, Q) =
∑

i |ci|, where P (x)−Q(x) =
∑

i cix
i.

Notice that the Euclidean distance “came from” the
Eulcidean norm on Q, which is the absolute value.
Suppose we have a norm on a field F , i.e. a map de-
noted by ‖ ‖ from F to the non-negative real num-
bers, such that

1. ‖x‖ = 0 iff x = 0,

2. ‖x · y‖ = ‖x‖ · ‖y‖,

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Then we can define a distance d(x, y) = ‖x − y‖.
We say that this distance is induced by the norm
‖ ‖. We say that the norm is trivial if ‖0‖ = 0 and
‖x‖ = 1 for all x 6= 0.

Now let us ask ourselves a question: is the Euclidean
distance between rational numbers really the most
“natural” one? Is there any other way to describe
the “closeness” between them? It turns out that the
answer to this question is YES!

Let us fix a prime number p. Then any rational
number r can be uniquely written in the form

r = pk m

n
,

where k ∈ Z, and

(m, n) = (m, p) = (n, p) = 1.

This number k is denoted by ordpr. If r is an in-
teger, then ordpr is the greatest k such that r ≡ 0
(mod pk).

Definition.

‖r‖p = p−ordpr, if r 6= 0

0 , if r = 0.

is called the p-adic norm of r.

10. Prove the following formulae:

1. ‖r1r2‖p = ‖r1‖p‖r2‖p;

2. ‖r1 + r2‖p ≤ max(‖r1‖p, ‖r2‖p);

3. if ‖r1‖p < ‖r2‖p then ‖r1 + r2‖p = ‖r2‖p.

We introduce a new (p-adic) distance on Q by the
formula:

(2) dp(r1, r2) = ‖r1 − r2‖p.

Definitions. A norm satisfying

‖r1 + r2‖p ≤ max(‖r1‖p, ‖r2‖p)

instead of the triangle inequality is called
non-Archimedian. A norm which is not
non-Archimedian is called Archimedian. A distance
induced by a (non-) Archimedian norm is called
(non-) Archimedian.

We sometimes let ‖ ‖∞ denote the usual absolute
value norm on Q.

11. Prove that dp is the distance function on Q, i.e.

1. dp is symmetric: dp(r1, r2) = dp(r2, r1),

2. dp is non-negative: dp(r1, r2) ≥ 0, and
dp(r1, r2) = 0 iff r1 = r2,

3. dp satisfies the triangle inequality:

dp(r1, r3) ≤ dp(r1, r2) + dp(r2, r3).

It follows from Problem 10 that dp satisfies a stronger
inequality:

(3) dp(r1, r3) ≤ max(dp(r1, r2), dp(r2, r3)).

Definition. A metric space with a distance satisfy-
ing (3) is called an ultrametric space.

Thus a field with a non-Archimedian norm is an ul-
trametric space.

12. Prove that all triangles in an ultrametric space
are isosceles, and that the length of the base does
not exceed the length of the side.
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Let us define a disc of radius r (r is a non-negative
real number) with center a ∈ M (M is a metric
space) :

D(a, r) = {x ∈ M | d(x, a) ≤ r}.

13. Prove that if M is an ultrametric space, then
any point in D(a,r) is its center.

14. Prove that in any complete normed field, with
a non-Archimedian norm, a series

∑
n xn converges

if and only if xn → 0.

15. Prove that rational integers Z form a bounded
set of diameter 1 with respect to the p-adic distance
dp.

Definitions. We say two metrics d1 and d2 are
equivalent if a sequence is Cauchy with respect to
d1 iff it is Cauchy with respect to d2. We say two
norms are equivalent if they induce equivalent met-
rics. The symbol ∼ is used to represent the equiva-
lence of norms.

16. Let ‖ ‖1 and ‖ ‖2 be two norms on a field F .
Prove that ‖ ‖1 ∼ ‖ ‖2 iff there exists a positive real
number α such that ‖x‖1 = ‖x‖α

2 for all x ∈ F .

17. Prove that if 0 < ρ < 1, then the function on Q

‖x‖ = ρordpx, if x 6= 0

0, if x = 0,

is a non-Archimedian norm. Notice that by Problem
16 it is equivalent to ‖ ‖p. (What is α?) What
happens if ρ = 1, or if ρ > 1?

18. Prove that ‖ ‖p1
is not equivalent to ‖ ‖p2

if p1

and p2 are different primes.

19. Let ‖ ‖ = | |α, where α is a fixed positive num-
ber. Show that ‖ ‖ is a norm iff α ≤ 1, and that in
this case it is equivalent to | |.

20. Prove that two equivalent norms on a field are
either both Archimedian or both non-Archimedian.

The field of p-adic numbers

We can apply our completion procedure to Q with
respect to dp to obtain a complete metric space de-
noted by Qp. Its elements are equivalence classes
of Cauchy sequences with respect to the following
relation: {ai} ∼ {bi} if ‖ai − bi‖p → 0 as i → ∞.

For any x ∈ Q, let {x} denote the constant Cauchy
sequence. We have {x} ∼ {y} iff x = y. The equiv-
alence class of {0} is denoted by 0.

We define the norm ‖ ‖p of an equivalence class a to
be limi→∞ ‖ai‖p, where {ai} is any representative of
a.

21. Prove that if {ai} is a Cauchy sequence in Q,
then limi→∞ ‖ai‖p exists.

Remark. In going from Q to R the possible val-
ues of ‖ ‖∞ = | | were enlarged to include all non-
negative real numbers, but in going from Q to Qp the
possible values of ‖ ‖p remain the same: {pn}n∈N∪0.
This is the reason the p-adic norm is also called the
discrete valuation.

Ostrowski Theorem. Every non-trivial norm ‖ ‖
on Q is equivalent to ‖ ‖p for some prime p or for
p = ∞. 2

Proof. We give a proof as a series of exercises.

I. Suppose there exists a positive integer n such
that ‖n‖ > 1, and let n0 be the least such n.
Then we can write ‖n0‖ = nα

0 for some positive
real number α.

a) Prove that for any n ∈ Z, ‖n‖ = nα.

b) Prove that for any x ∈ Q, ‖x‖ = xα.

c) Use Problem 19 to conclude that ‖ ‖ is
equivalent to the absolute value | |.

II. Suppose ‖n‖ ≤ 1 for all positive integers n.
Let n0 be the least n such that ‖n‖ < 1.

a) Why does such an n0 exist?

b) Show that n0 must be a prime: n0 = p.

c) Prove that if q is a prime, q 6= p, then
‖q‖ = 1.

d) Prove that for any positive integer a, ‖a‖ =
ρordpa, where ρ = ‖p‖ < 1.

e) Use Problem 17 to conclude that in this
case ‖ ‖ is equivalent to ‖ ‖p.

Given two equivalence classes a and b of Cauchy se-
quences, we define a · b to be the equivalence class
of the sequence {aibi} where {ai} ∈ a and {bi} ∈ b.
The sum is defined similarly term-by-term.

22. Prove that the definition of the sum and the
product of equivalence classes of Cauchy sequences
does not depend on the choice of representatives.
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The additive inverses are defined in an obvious way.
For multiplicative inverses we need the following fact:

23. Prove that any Cauchy sequence is equivalent
to one with no zero terms.

Then as a multiplicative inverse for {ai} we can take
{1/ai} which is Cauchy unless ‖ai‖p → 0, i.e. unless
{ai} = {0}. Why?

Thus we obtain a field of p-adic numbers Qp.

Let us consider the following series

(1)
b−k

pk +
b−k+1

pk−1 + . . . + b0 + b1p + b2p
2 + . . ..

By the construction and a general theorem about
completions, each series of the form (1) represents
an element of Qp. The converse statement is also
true.

Theorem. Every equivalence class a in Qp has ex-
actly one representative Cauchy sequence which is a
sequence of partial sums of a series in the form (1).
2

Proof. First notice that it is sufficient to give a proof
in the case ‖a‖p ≤ 1.

24. Deduce the theorem from the statement for a ∈
Qp with ‖a‖p ≤ 1.

Now consider our Cauchy sequence {ai} ∈ a, and let
N(j) be a natural number such that ‖ai − ai′‖p ≤
p−j whenever i, i′ ≥ N(j). We have for i ≥ N(1),

‖ai‖p ≤ max(‖ai′‖p, ‖ai − ai′‖p)

≤ max(‖ai′‖p, 1/p),

for all i′ ≥ N(1). But ‖ai′‖p → ‖a‖p as i′ → ∞.
Hence for i ≥ N(1), we have ‖ai‖p ≤ 1.

25. If x ∈ Q and ‖x‖p ≤ 1, then for any j there
exists an integer n chosen from the set {0, 1, . . . , pj−
1} such that ‖n − x‖p ≤ p−j.

Now apply Problem 25 to find a sequence cj where
0 ≤ cj < pj such that

‖cj − aN(j)‖p ≤ 1/pj.

We want to show that {cj} ∼ {aj} and that it is
a sequence of partial sums of a series of the form
(1). The first assertion follows from the estimate for
i ≥ N(j),

‖ci − ai‖p = ‖ci − cj + cj − aN(j) − (ai − aN(j))‖p

≤ max(‖ci − cj‖p, ‖cj − aN(j)‖p,

‖ai − aN(j)‖p)

≤ max(1/pj, 1/pj, 1/pj)

= 1/pj.

Hence ‖ci − ai‖p → 0 as i → ∞. The second asser-
tion follows from the estimate

‖cj+1 − cj‖p = ‖ci+1 − aN(j+1) + aN(j+1)

− aN(j) − (cj − aN(j))‖p

≤ max(‖ci+1 − aN(j+1)‖p,

‖aN(j+1) − aN(j)‖p, ‖cj − aN(j)‖p)

≤ max(1/pj+1, 1/pj, 1/pj)

= 1/pj.

This proves that cj ≡ cj+1 (mod pj), which is ex-
actly equivalent to the claim.

26. Prove the uniqueness result: given a ∈ Qp there
is a unique Cauchy sequence {ci} for which

1. 0 ≤ ci < pi for i = 1, 2, . . ..

2. ci ≡ ci+1 (mod pi) for i = 1, 2, . . ..

Thus any element in Qp can be represented by an
infinite-to-the-left fraction in base p:

(2) . . . bn . . . b2b1b0.b−1 . . . b−k, 0 ≤ bi ≤
p − 1.

Arithmetic operations in Qp

Here are some examples in Q7:

. . . 263 × . . . 154 = . . . 455

. . . 30.2 − . . . 56.4 = . . . 40.5

. . . 421 : . . . 153 = . . . 615.

27. Prove that in Q5 there exists a square root of
−1(= . . . 44), and find its last three digits. How
many such roots are there?

28. Solve the equation x2 − 6 = 0 in Q5.

29. Solve the equation x2 − 7 = 0 in Q5.

Let Zp be the closure of Z in Qp, the set of p-adic
integers.
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30. Prove that Zp = {a ∈ Qp | ‖a‖p ≤ 1}.

31. Prove that Zp is the set of elements in Qp of
the form (2) in the previous section with bi = 0 for
i < 0.

The p-adic integers form a subring of Qp. Let Z×

p

be the set of invertible elements in Zp (also called
p-adic units), i.e.

Z×

p = {x ∈ Zp | 1/x ∈ Zp}.

Then Z×

p = {x ∈ Zp | ‖x‖ = 1}.

32. Prove that the p-adic expansion of a ∈ Qp has
repeating digits onward from some point (i.e., it is
eventually periodic) if and only if a ∈ Q.

33. Prove that if x ∈ Q and ‖x‖p ≤ 1 for every
prime p, then x ∈ Z.

The method used in the solution of Problem 28 is
quite general.

Hensel’s Lemma. Let F (x),

F (x) = c0 + c1x + . . . + cnxn,

be a polynomial whose coefficients are p-adic inte-
gers. Let F ′(x),

F ′(x) = c1 + 2c2x + 3c3x
2 + . . . + ncnxn−1,

be the derivative of F . Let a0 be a p-adic inte-
ger such that F (a0) ≡ 0 (mod p) and F ′(a0) 6= 0
(mod p). Then there exists a unique p-adic integer
a such that

F (a) = 0 and a ≡ a0 (mod p).

(Note, in the special case of Problem 28

F (x) = x2 − 6,
F ′(x) = 2x, a0 = 1).

2

34. Explain why Q10 is not a field.

Additional problems on p-adic

numbers

35. What is the cardinality of Zp? Prove your an-
swer.

36. Let us consider a map

ϕ : Qp → R,

which maps a p-adic number,

. . . b2b1b0.b−1b−2 . . . b−k → b−k . . . b−2b−1.b0b1b2 . . . ,

to a real number in base p. Prove that ϕ is a con-
tinuous map of Qp onto R+, the set of non-negative
real numbers, and that it maps Zp onto the closed
interval [0, 1].

Notice that due to non-uniqueness of writing the real
numbers in base p, this map is not 1-to-1.

37. Construct a 1-to-1 continuous map of Zp onto
a Cantor set such that the inverse map is also con-
tinuous.

38. Prove that for any finite p, any sequence of inte-
gers has a subsequence which is Cauchy with respect
to ‖ ‖p.

Is it possible to determine by a p-adic expansion of
a rational number whether it is positive or negative?
The answer is YES, and it is given in the following
problem.

39. Let r ∈ Q. Prove that its p-adic expansion can
be represented in the form . . . aaaaaab, where the
fragments a and b have the same number of digits.
Prove that r > 0 is equivalent to b > a in the usual
sense (as integers written in base p).

40. Prove that it is impossible to introduce an order

relation in Q such that

1. if x > 0 and y > 0, then x + y > 0;

2. if x > 0 and y > 0, then xy > 0;

3. if xn > 0 and there exists a limit, limn→∞ xn =
x, then x ≥ 0.

More on real numbers: algebraic

and transcendental numbers

41. Prove that Q(3
√

2) is a field.

42. Prove that any finite extension of R is isomor-
phic to either R or C.

43. Prove that Q(
√

2) and Q(
√
−2) are not isomor-

phic as fields.



What are Numbers? 71

Algebra: from reals to complex

numbers, algebraically closed

fields; Commutative, associative,

and division algebras

Definition. Let F be a field of characteristic 6= 2,
a, b ∈ F ∗ = F \ {0}, and

A = (
a, b

F
)

be a quaternion algebra over F , i.e., an algebra (a
vector space and a ring) over F of dimension 4 with
a basis {1, i, j, k} where

i2 = a, j2 = b, k = ij = −ji.

Hamiltonian quaternions H correspond to the case
a = b = −1.

44. Prove that multiplication of quaternions is as-
sociative.

45. Prove that if a ∈ (F ∗)2, then A = (a,b
F ) ≈

M(2, F ).

46. Prove that for any λ ∈ F ∗, (a,b
F ) = (λ2a,b

F ).

Definition. A quaternion algebra A is called a di-

vision algebra if each non-zero element of A has an
inverse.

47. Prove that A is a division algebra if and only if
N(x) = 0 only for x = 0.

48. Prove that if A,

A = (
a, b

F
),

is not isomorphic to M(2, F ), then A is a division
algebra.

49. Prove that there are only two quaternion alge-
bras over R up to an isomorphism:

A = (
a, b

R
) ≈ H,

if a < 0, b < 0, and otherwise

A = (
a, b

R
) ≈ M(2, R).

50. Prove that q1q2 = q2q1 and q1 + q2 = q1 + q2.

Group Projects

• A non-Archimedian extension of the field of
real numbers: Conway numbers and non-standard
analysis

• Surreal numbers

• Representation of real numbers by continued
fractions

• Alternative arithmetic on the numbers a + bi:
double and dual numbers

• Transcendental numbers

• Quaternions and vector algebra in 3-dimensional
real vector space

• From complex numbers to quaternions—the
doubling procedure—Cayley numbers

• Proof of Hurwitz’s theorem

• Quaternion algebras over Q

• The connection with units in algebraic number
fields

APPENDIX: Hints and Solutions

to Selected Problems

6. After completion, (−π
2 , π

2 ) becomes [−π
2 , π

2 ], and
(0,∞) becomes [0,∞).

7. Let ∆n = [0, 1
n ]. Then {∆n} is a Cauchy se-

quence, since given ε > 0, take N > 2
ε , then for

m, n > N ,
d(∆n, ∆m) < ε.

But {∆n} cannot converge to any closed interval of
positive length. Hence the space is not complete,
and we need to add “0-intervals,” a = [a, a], to com-
plete it.

8. Any sequence of intervals with lengths converging
to 0 is a Cauchy sequence; they all correspond to a
single point α in the completion, such that d(α, ∆) =
|∆|. To prove that this is the only point we have to
add, show that for each sequence {∆n} for which
|∆n| does not approach 0, there is a subsequence
such that all intersections ∆i ∩ ∆j are not empty.
Then use the fact that for intersecting intervals the
distance coincides with the distance from Problem
7.
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9. The sequence {Pk}, where Pk =
∑k

i=0(
x
2 )i, is

a non-converging Cauchy sequence for all three dis-
tances.

16. Suppose ‖ ‖1 ∼ ‖ ‖2, and a 6= 0 such that
‖a‖2 6= 1 (we assume ‖ ‖ is non-trivial), say ‖a‖2 >
1. Then ‖a‖1 = ‖a‖α

2 for some α. Show that for all
x ∈ F , ‖x‖1 = ‖x‖α

2 .

17. If ρ = 1 then you get a trivial norm. If ρ > 1,
then you do not get a norm at all, since the triangle
inequality will not hold.

18.The sequence {pn
1} → 0 in ‖ ‖1 but not in ‖ ‖2.

19. Prove the triangle inequality.

20. First prove that the norm is non-Archimedian
iff ‖n‖ ≤ 1 for any integer n = 1 + . . . + 1, n times.
Then use the sequence {1/ni}.

21. If a = 0, then by definition limi→∞ ‖ai‖p = 0. If
a 6= 0, then there exists an ε > 0 such that for every
N > 0, there exists an iN > N with ‖aiN

‖p > ε. If
we choose N large enough such that ‖ai − aj‖p < ε
for i, j > N , we have

‖ai − aiN
‖ < ε for all i > N.

Since ‖aiN
‖p > ε, it follows from Problem 12 that

the triangle with vertices 0, ai, aiN
is isoceles. Hence

‖ai‖p = ‖aiN
‖p. Thus, for all i > N , ‖ai‖ has the

constant value ‖aiN
‖, which is then the limi→∞ ‖ai‖.

23. If ai = 0, take a′

i = pi. For a given ε > 0,
choose N > max(M, log1/p ε), where M is chosen
for a given sequence {an}. If {an} is not equivalent
to {0}, then we can always choose a subsequence
which contains no zero terms.

24. Consider a′ = apk, where ‖a‖p = pk.

25. Let
x =

a

b
,

written in lowest terms. Since ‖x‖p ≤ 1, p does not
divide b, {(b, pj) = 1}. We can find integers s and t
such that sb + tpj = 1. Let n = as. Then

‖n − x‖p = ‖as − (
a

b
)‖p

= ‖a

b
‖p‖sb − 1‖p

≤ ‖sb − 1‖p

= ‖tpj‖p

= ‖t‖p/pj

≤ 1/pj.

We can add a multiple of pj to n to get an integer
between 0 and pj for which ‖n − x‖p ≤ p−j still
holds.

28. Let x = a0 + a1 · 5 + a2 · 52 + . . .. Then

(a0 + a1 · 5 + a2 · 52 + . . .)2 = 1 + 1 · 5.

Comparing coefficients at 50, we get a2
0 ≡ 1 (mod 5).

Hence a0 = 1 or a0 = 4. Let a0 = 1. Comparing the
coefficients at 51, we get

2a1 · 5 ≡ 1 · 5 (mod 5).

Hence 2a1 ≡ 1 (mod 5), and a1 = 3. Continuing
this way, we determine all the ai uniquely. We obtain
x = . . . 4031.

43. First show that any field isomorphism must act
as an identity on Q.
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