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Lecture 1

Continued fractions

The theory of continued fractions is closely related to the Gauss reduc-
tion theory for indefinite integral quadratic forms translated into the matrix
language. More precisely, quadratic forms equivalent in the narrow sense
correspond to SL(2,Z)–equivalent matrices, while quadratic forms equiv-
alent in the wide sense correspond to GL(2,Z)–equivalent matrices. The
second theory can be expressed using the regular “plus” continued frac-
tions, and the first – via the theory of “minus” continued fractions. This
theory is much less known, and we will present it in detail.

We will see in subsequent lectures how convenient the minus contin-
ued fractions are in geometric applications, in particular for coding closed
geodesics (see §4.2).

1.1. Theory of “minus” continued fractions

Let α be arbitrary real number. We define a sequence of integers {ai},
i = 0, 1, 2, . . . and a sequence of real numbers {αi}, i = 1, 2 . . . by

a0 = [α] + 1, α1 =
1

a0 − α
,

and inductively,

an = [αn] + 1, αn+1 =
1

an − αn
. (1.1.1)

Next we define a sequence of rational numbers

rn = (a0, a1, . . . , an−1, an) = a0 −
1

a1 −
1

a2 −
1

. . . −
1
an

, n ≥ 0.
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2 LECTURE 1 CONTINUED FRACTIONS

Theorem 1.1. We have limn→∞ rn = α, i.e., any real number α is
represented as an infinite “minus continued fraction”

α = (a0, a1, . . . , an−1, . . . ) = a0 −
1

a1 −
1

a2 −
1

. . . −
1
. . .

.

Proof. (1) We claim that ai ≥ 2 for all i ≥ 1.
For i ≥ 1 we have αi = 1/ai−1 − αi−1. If αi−1 is not an integer, we have

0 < ai−1 − αi−1 < 1 and αi > 1, which implies ai > 2. If αi−1 is an integer,
then ai−1 − αi−1 = 1 and hence ai = 2, which proves our claim.

(2) We now define two sequences of integers {pn} and {qn}, n ≥ −2,
inductively:

p−2 = 0, p−1 = 1; pi = aipi−1 − pi−2 for i ≥ 0,
q−2 = −1, q−1 = 0; qi = aiqi−1 − qi−2 for i ≥ 0.

(1.1.2)

We will prove that rn = pn/qn. The three following statements ((2.1)-(2.3))
are proved by induction.

(2.1) We have 1 = q0 < q1 < q2 < · · · < qn < . . . , and so limn→∞ qn =
∞.

We have q1 = a1q0 − q−1 = a1 ≥ 2, the basis of induction. Now assume
that 1 = q0 < q1 · · · < qn−1.Then

qn = anqn−1 − qn−2 ≥ 2qn−1 = qn−1 + (qn−1 − qn−1) > qn−1,

as claimed.
(2.2) Suppose that

(a0, a1, . . . , an−1, x) = a0 −
1

a1 −
1

a2 −
1

. . . −
1
x

Then for any x ≥ 1,

(a0, a1, . . . , an−1, x) =
xpn−1 − pn−2

xqn−1 − qn−2
.

This follows by induction from the definition of {pn} and {qn}.
(2.3) We have pi−1qi − piqi−1 = 1 for all i ≥ 1.
Using (1.1.2) repeatedly, we see that

pi−1qi − piqi−1 = pi−2qi−1 − pi−1qi−2 = · · · = p−2q−1 − p−1q−2 = 1.

Then using (2.2) with x = an, we obtain rn = pn/qn.
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(3) The sequence {rn} is monotone decreasing since, by (2.3),
pn
qn
− pn+1

qn+1
=

1
qnqn+1

> 0

and bounded from below by a0−1, hence has a limit, which is a real number.
In order to prove that this limit is α, we write α = (a0, a1, . . . , an−1, αn),

where αn is defined in (1.1.1). Then, using (2.3) again, we obtain

pn−1

qn−1
− α =

pn−1

qn−1
− αnpn−1 − pn−2

αnqn−1 − qn−2

=
1

qn−1(αnqn−1 − qn−2)
≤ 1

qn−1
→ 0.

Thus, limn→∞ rn = α. �
Conversely, let a0, a1, . . . , an, . . . be an infinite sequence of integers with

a1, a2, · · · ≥ 2. We define two sequences of integers {pn} and {qn}, n ≥ −2
by (1.1.2) and prove as in Theorem 1.1 that

rn =
pn
qn

= (a0, a1, . . . , an),

and that the sequence {rn} tends to a limit, namely to the real number α
with a0 = [α]+1. If we apply the same procedure to the sequence a1, a2, . . . ,
we obtain, as the limit of the corresponding sequence, the real number

α1 = lim
n→∞

(a1, a2, . . . , an).

By the properties of limits, we conclude that

α1 =
1

a0 − α
,

and by induction obtain the recursive relations (1.1.1).
Thus there is a one–to–one correspondence between the set of real num-

bers α and the set of infinite sequences a0, a1, . . . , an, . . . with integers a0 ∈ Z
and ai ≥ 2 for i ≥ 1. Using this correspondence, we will prove the following
statement.

Theorem 1.2. A real number α is rational if and only if from some
point on all the ai in its infinite minus continued fraction are equal to 2
(i.e., if there exists a positive integer n such that αk = 2 for all k ≥ n).

Proof. First we notice that

(2, 2, . . . ) = 1,
since it is a limit of the sequence 2, 3/2, 4/3, . . . n + 1/n, . . . , and this se-
quence tends to 1.

If α = n ∈ Z, we have n = (n + 1, 2, 2, . . . ).
Now assume α ∈ Q, is not an integer, i.e. α = c0/d0, then the “tails”

are also rational numbers written in the least terms,
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α1 = (a1, a2, . . . ) =
c1

d1
,

α2 = (a2, a3, . . . ) =
c2

d2
,

. . . . . .

αn = (an, an+1, . . . ) =
cn
dn

,

. . . . . . .

We want to prove that if αN is an integer for some N , then it has a tail
of 2’s. Assume not, i.e., suppose all the αn = cn/dn are not integers, i.e.,
all the dn are greater than 1. Since an ≥ 2 for n ≥ 1, we have cn/dn > 1.
We will show that d0 > d1 > . . . , and therefore for some N we must have
dN = 1. But

c0

d0
= a0 −

1
c1
d1

= a0 −
d1

c1
, i.e.,

c0

d0
+

d1

c1
= a0.

Similarly

cn
dn

+
dn+1

cn+1
= an, or cncn+1 + dndn+1 = andncn+1.

Since cn+1 divides the other two terms of the above formula, we conclude
that cn+1|dndn+1. But (cn+1, dn+1) = 1, therefore cn+1|dn. Hence we con-
clude that cn+1 < dn. Using the fact that cn+1 > dn+1 again, we obtain
dn+1 < dn.

Conversely, if α has a tail of 2’s, we have α = (a0, a1, . . . , 1), hence α is
a rational number. �

Definition. A real number is called a quadratic irrationality if it is a
real root of the quadratic equation ax2 + bx + c with coefficients a, b, c ∈ Z,
c 6= 0, while the discriminant D = b2 − 4ac is positive and is not a perfect
square.

Theorem 1.3. A real number α is a quadratic irrationality if and only
if its minus continued fraction expansion is eventually periodic with the pe-
riodic part being anything but a repeated 2.

Proof. Let α be a quadratic irrationality. Then it can be written in
the form

α = α0 =
m0 +

√
D

`0
,

where m0, `0,D ∈ Z, `0 6= 0, and D > 0 is not a square. Let



1.1. THEORY OF “MINUS” CONTINUED FRACTIONS 5

α = (a0, a1, . . . , an, . . . ) = a0 −
1

a1 −
1

a2 −
1

. . . −
1

an −
1
. . .

.

Then αn is the “tail” of the minus continued fraction for α,

αn = (an, an+1, . . . ) = an −
1

an+1 −
1
. . .

,

and α = (a0, a1, . . . , an−1, αn). It is proved by induction that all the αn are
quadratic irrationalities of the form αn = (mn +

√
D)/`n with integral mn

and `n, `n 6= 0, which satisfy the following recurrent relations:

mn+1 = an`n −mn, `n+1`n = m2
n+1 −D. (1.1.3)

Let α′n = (mn −
√

D)/`n. Using (2.2) of Theorem 1.1, we can write

α0 = (a0, a1, . . . , an−1, αn) =
αnpn−1 − pn−2

αnqn−1 − qn−2
.

Taking the conjugates of both sides, we obtain,

α′0 = (a0, a1, . . . , an−1, α
′
n) =

α′npn−1 − pn−2

α′nqn−1 − qn−2
.

Solving for α′n we obtain

α′n =
α′0qn−2 − pn−2

α′0qn−1 − pn−1
=

qn−2

qn−1
·
α′0 −

pn−2

qn−2

α′0 −
pn−1

qn−1

.

Since both pn−1

qn−1
and pn−2

qn−2
tend to α0 6= α′0, the second fraction tends to 1.

Since the sequence {rn} = {pn/qn} is monotone decreasing and the sequence
{qn} is increasing, the second fraction tends to 1 from below, and we see
that qn−2

qn−1
< 1. Thus we conclude that there exists an N > 1 such that for

all n > N we have 0 < α′n < 1. Since an ≥ 2, we have αn > 1. It follows
that

0 <
mn −

√
D

`n
< 1,

mn +
√

D

`n
> 1. (1.1.4)

Since αn−α′n = 2
√

D/`n > 0, we conclude that `n > 0, and therefore (1.1.4)
implies that |mn − `n| <

√
D, and hence can take only finitely many values

for a given D. We have D − (mn − `n)2 > 0, and this expression also can
take only finitely many values. Using (1.1.3), we can write
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D − (mn − `n)2 = D −m2
n − `2

n + 2mn`n = −`n`n−1 − `2
n + 2mn`n

= `n(−`n−1 − `n + 2mn).

Thus `n|(D − (mn − `n)2), hence `n takes only finitely many values, and so
does mn. Therefore, for some j 6= k, αj = αk, i.e., the “tails” of α coincide.
More precisely, this implies aj = [αj ]+1 = [αk]+1 = ak, and so on, i.e., the
minus continued fraction expansion of α is eventually periodic. Then the
periodic part cannot be a repeated 2 since in this case α would be rational
by Theorem 1.2.

Conversely, it is easy to see that if α has an eventually periodic con-
tinued fraction expansion, it is a root of a quadratic equation with integer
coefficients. Since the periodic part of its minus continued fraction expan-
sion is anything but a repeated 2, α is irrational by Theorem 1.2, so the
second root is irrational as well, and α is a quadratic irrationality. �

Theorem 1.4. Let α be a quadratic irrationality. Then α has a purely
periodic minus continued fraction expansion if and only if α > 1, 0 < α′ < 1,
where α′ is the second root of the same quadratic equation ax2 + bx + c = 0.

Proof. If α is purely periodic, α = (a1, . . . , ar), then α > 1 since
a1 ≥ 2. We continue this periodic sequence by setting ai+r = ai for all
i ∈ N. Then we can define

xi =
1

(ai−1, . . . , ai−r)
.

Then 1/(xi+1) = ai − xi, or xi = ai − 1/(xi+1). It follows that

x1 =
1

(ar, . . . , a1)
satisfies the equation

x1 = (a1, a2, . . . , ar−1, x1) = a1 −
1

a2 −
1

. . . −
1

ar−1 −
1
x1

,

which is the same quadratic equation that α satisfies, but 0 < x1 < 1, and
so x1 is different from α. Therefore x1 = α′, so that 0 < α′ < 1.

Conversely, let α > 1 and 0 < α′ < 1. We first notice that in the proof
of Theorem 1.3 we already showed that if α is reduced, then it is eventually
periodic, i.e., that there exist a j, j 6= k, such that aj = ak, aj+1 = ak+1,
and so on. It remains to show that it is actually purely periodic, i.e., that
aj−1 = ak−1 as well. We have
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αi+1 =
1

ai − αi
.

We have seen in the proof of Theorem 1.3 that all “tails” αi, α1 = α, are
also quadratic irrationalities with the same D as α, therefore

α′i+1 =
1

ai − α′i
. (1.1.5)

We claim that for all i ≥ 1, 0 < α′i < 1. This is seen by induction: for i = 1,
0 < α′1 = α′ < 1. Suppose 0 < α′i < 1. Then ai − α′i > 1, and by (1.1.5), we
have 0 < α′i+1 < 1. Since

ai−1 =
1
α′i

+ α′i−1,

using the claim above we see that

ai−1 =
[ 1
α′i

]
+ 1,

where [·] denotes the integer part of a number. This allows us to conclude
that αj = αk implies aj−1 = ak−1. �

1.2. Theory of “plus” continued fractions

This theory is very similar, and is presented as a series of problems.
Let a0, a1, . . . , an, . . . be an infinite sequence of positive integers. We

define two sequences of integers {pn} and {qn}, n ≥ −2, inductively:

p−2 = 0, p−1 = 1; pi = aipi−1 + pi−2 for i ≥ 0,
q−2 = 1, q−1 = 0; qi = aiqi−1 + qi−2 for i ≥ 0

(1.2.1)

1. Prove that 1 = q0 ≤ q1 < q2 < · · · < qn < . . . .
Now we define

〈a0, a1, . . . , an−1, x〉 = a0 +
1

a1 +
1

a2 +
1

.. . +
1
x

2. Prove that for any x ≥ 1 we have

〈a0, a1, . . . , an−1, x〉 =
xpn−1 + pn−2

xqn−1 + qn−2
.

3. Prove that pi−1qi − piqi−1 = (−1)i for i ≥ 1.
Let rn = 〈a0, . . . , an〉. By (1.2.1) and Problem 2, we obtain
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rn =
anpn−1 + pn−2

anqn−1 + qn−2
=

pn
qn

. (1.2.2)

4. Show that {rn} is a sequence such that

r0 < r2 < r4 < · · · < r5 < r3 < r1,

that the limit limn→∞ rn exists, and this limit is a real number.
Conversely, let α be any real number. We define a sequence of inte-

gers {ai}, i = 0, 1, 2, . . . and a sequence of real numbers {αi}, i = 1, 2 . . . ,
inductively:

a0 = [α], α1 =
1

α− a0
an = [αn], αn+1 =

1
αn − an

.

This process will terminate if αn is an integer for some n.
5. Prove that ai ≥ 1 for those i ≥ 1 for which ai is defined.
Now we can define a sequence rn = pn/qn as in (1.2.2), which can be

infinite or finite, as explained above.
6. Prove that if the sequence {rn} is infinite, then limn→∞ rn = α; if

the sequence is finite, {r0, r1, . . . , rn}, then α = rn.
Moreover, we deduce that the convergents rn = pn/qn are the best ap-

proximations of α:
7. If α is irrational, then ∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1
q2
n

.

Thus there is a one–to–one correspondence between the set of real num-
bers α and the set of sequences (finite and infinite) a0, a1, . . . , an, . . . with
integers a0 ∈ Z and ai ≥ 1 for i ≥ 1. Using this correspondence, prove the
following statements.

8. The real number α is rational if and only if the algorithm described
above terminates, i.e., αn is an integer for some n.

9. The real number α is a quadratic irrationality, i.e., a real root
of the equation ax2 + bx + c with coefficients a, b, c ∈ Z, c 6= 0, that has
two distinct real roots, if and only if its continued fraction expansion is
eventually periodic.

Problem 8 can be solved using the Euclidean algorithm. Problem 9 can
be solved by an argument similar to the one used to prove Theorem 1.3. It
is pretty standard and appears in textbooks on Number Theory treating the
“plus” continued fractions.

There is a neat formula transforming one type of continued fractions to
the other.
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10. Let 〈m0,m1,m2, . . . 〉 (mi ∈ Z, m1,m2, · · · ≥ 1) be a “plus” con-
tinued fraction expansion of a real number. Show that its minus continued
fraction expansion is given by the formula on the right:

〈m0,m1,m2, . . . 〉 = (m0 + 1, 2, 2 . . . , 2︸ ︷︷ ︸
m1−1

,m2 + 2, 2, 2 . . . , 2︸ ︷︷ ︸
m3−1

,m4 + 2, . . . ).





Lecture 2

Hyperbolic geometry

2.1. The hyperbolic plane

Our main object of study in this section will be the upper half–plane
H = {z ∈ C | Im(z) > 0}. Equipped with the metric

ds =
√

dx2 + dy2

y
, (2.1.1)

it becomes a model of the hyperbolic or Lobachevski plane. We will see that
the geodesics (i.e., the shortest curves with respect to this metric) will be
straight lines and semicircles orthogonal to the real line

R = {z ∈ C | Im(z) = 0}.
By elementary geometry considerations, one easily shows that any two

points in H can be joined by a unique geodesic, and that from any point in
H in any direction one can draw a geodesic. We will measure the distance
between two points in H along the geodesic connecting them. It is clear
that that any geodesic can be continued indefinitely, and that one can draw
a circle centered at a given point with any given radius.

The tangent space to H at a point z is defined as the space of tangent
vectors at z. It has the structure of a 2–dimensional real vector space or of
a 1–dimensional complex vector space: TzH ≈ R2 ≈ C. The Riemannian
metric (2.1.1) is induced by the following inner product on TzH: for ζ1 =
ξ1 + iη1 and ζ2 = ξ2 + iη2 in TzH, we put

〈ζ1, ζ2〉 =
ξ1ξ2 + η1η2

Im(z)2
,

which is a scalar multiple of the Euclidean inner product.
We define the angle between two geodesics in H at their intersection

point z as the angle between their tangent vectors in TzH. Using the formula

cos ϕ =
〈ζ1, ζ2〉
‖ζ1‖‖ζ2‖

=
(ζ1, ζ2)
|ζ1||ζ2|

,

where ‖ ‖ denotes the norm in TzH corresponding to the inner product
〈 , 〉, and | , | denotes the norm corresponding to the inner product ( , ), we
see that this notion of angle measure coincides with the Euclidean angle
measure.

11
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The first four axioms of Euclid hold for this geometry. However, the
fifth postulate of Euclid’s Elements, the axiom of parallels, does not hold:
there is more than one geodesic passing through the point z not lying in the
geodesic L that does not intersect L (see Fig. 2.1.1).

z

L

Figure 2.1.1. Geodesics in the upper half-plane

Therefore the geometry in H is non–Euclidean. The metric in (2.1.1)
is said to be the hyperbolic metric. It can be used to calculate the length
of curves in H the same way the Euclidean metric

√
dx2 + dy2 is used to

calculate the length of curves on the Euclidean plane. Let I = [0, 1] be the
unit interval, and γ : I →H be a piecewise differentiable curve in H,

γ(t) = {v(t) = x(t) + iy(t) | t ∈ I}.
The length of the curve γ is defined as

h(γ) =
∫ 1

0

√
(dxdt )

2 + (dydt )
2

y(t)
dt. (2.1.2)

We define the hyperbolic distance between two points z,w ∈ H by setting

ρ(z,w) = inf h(γ),

where the infimum is taken over all piecewise differentiable curves connecting
z and w.

Proposition 2.5. The function ρ : H × H → R defined above is a
distance function, i.e., it is

(a) nonnegative: ρ(z, z) = 0; ρ(z,w) > 0 if z 6= w;
(b) symmetric: ρ(u, v) = ρ(v, u);
(c) and satisfies the triangle inequality: ρ(z,w) + ρ(w, u) ≥ ρ(z, u).

Proof. It is easily seen from the definition that (b), (c), and the first
part of property (a) hold. The second part follows from Exercise 11. �

The group SL(2,R) acts on H by Möbius transformations as follows. To

each g =
(

a b
c d

)
∈ SL(2,R), we assign a transformation

Tg(z) =
az + b

cz + d
. (2.1.3)
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Proposition 2.6. Any Möbius transformation Tg maps H into itself.

Proof. We can write

w = Tg(z) =
(az + b)(cz + d)
|cz + d|2 =

ac|z|2 + adz + bcz + bd

|cz + d|2 .

Therefore

Im(w) =
w − w

2i
=

(ad− bc)(z − z)
2i|cz + d|2 =

Im(z)
|cz + d|2 . (2.1.4)

Thus Im(z) > 0 implies Im(w) > 0. �

One can check directly that if g, h ∈ SL(2,R), then Tg ◦ Th = Tgh and
T−1
g = Tg−1 . It follows that each Tg, g ∈ SL(2,R) is a bijection, and thus we

obtain a representation of the group SL(2,R) by Möbius transformations of
the upper–half plane H. In fact, the two matrices g and −g give the same
Möbius transformation, so formula (2.1.3) actually gives a representation of
the quotient group SL(2,R)/{± 12} (where 12 is the 2× 2 identity matrix)
denoted by PSL(2,R), which we will identify with the group of Möbius
transformations of the form (2.1.3). Notice that PSL(2,R) contains all
transformations of the form

z → az + b

cz + d
with ad− bc = ∆ > 0,

since by dividing the numerator and the denominator by
√

∆ we obtain a
matrix for it with determinant equal to 1. In particular, PSL(2,R) con-
tains all transformations of the form z → az + b (a, b ∈ R, a > 0). Since
transformations in PSL(2,R) are continuous, we have the following result.

Theorem 2.7. The group PSL(2,R) acts on H by homeomorphisms.

Definition. A transformation of H onto itself is called an isometry if
it preserves the hyperbolic distance in H.

Isometries clearly form a group; we will denote it by Isom(H).

Theorem 2.8. Möbius transformations are isometries, i.e., we have the
inclusion PSL(2,R) ⊂ Isom(H).

Proof. Let T ∈ PSL(2,R). By Theorem 2.7 T maps H onto itself. Let
γ : I →H be the piecewise differentiable curve given by z(t) = x(t) + iy(t).
Let

w = T (z) =
az + b

cz + d
;

then we have w(t) = T (z(t)) = u(t)+iv(t) along the curve γ. Differentiating,
we obtain

dw

dz
=

a(cz + d)− c(az + b)
(cz + d)2

=
1

(cz + d)2
. (2.1.5)
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By (2.1.4) we have

v = y/|cz + d|2, therefore |dw

dz
| = v

y
.

Thus

h(T (γ)) =
∫ 1

0

|dwdt |dt

v(t)
=
∫ 1

0

|dwdz ||
dz
dt |dt

v(t)
=
∫ 1

0

|dzdt |dt

y(t)
= h(γ).

The invariance of the hyperbolic distance follow from this immediately. �

2.2. Geodesics

Theorem 2.9. The geodesics in H are semicircles and the rays orthog-
onal to the real axis R.

Proof. Let z1, z2 ∈ H. First consider the case in which z1 = ia, z2 =
ib with b > a. For any piecewise differentiable curve γ(t) = x(t) + iy(t)
connecting ia and ib, we have

h(γ) =
∫ 1

0

√
(dxdt )

2 + (dydt )
2

y(t)
dt ≥

∫ 1

0

|dydt |dt

y(t)
≥
∫ 1

0

dy
dt dt

y(t)
=
∫ b

a

dy

y
= ln

b

a
,

but this is exactly the hyperbolic length of the segment of the imaginary
axis connecting ia and ib. Therefore the geodesic connecting ia and ib is the
segment of the imaginary axis connecting them.

Now consider the case of arbitrary points z1 and z2. Let L be the unique
Euclidean semicircle or a straight line connecting them. Then by Exercise 12,
there exists a transformation in PSL(2,R) which maps L into the positive
imaginary axis. This reduces the problem to the particular case studied
above, so that by Theorem 2.8 we conclude that the geodesic between z1

and z2 is the segment of L joining them. �

Thus we have proved that any two points z and w in H can be joined
by a unique geodesic, and the hyperbolic distance between them is equal
to the hyperbolic length of the geodesic segment joining them; we denote
the latter by [z,w]. This and the additivity of the integral (2.1.2) imply the
following statement.

Corollary 2.10. If z and w are two distinct points in H, then

ρ(z,w) = ρ(z, ξ) + ρ(ξ, w)

if and only if ξ ∈ [z,w].

Theorem 2.11. Any isometry of H, in particular, any transformation
in PSL(2,R), maps geodesics into geodesics.

Proof. The same argument as in the Euclidean case works here. �
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The cross–ratio of distinct points z1, z2, z3, z4 ∈ Ĉ = C ∪ {∞} is defined
by the following formula:

(z1, z2; z3, z4) =
(z1 − z2)(z3 − z4)
(z2 − z3)(z4 − z1)

.

Theorem 2.12. Suppose z,w ∈ H are two distinct points, the geodesic
joining z and w has endpoints z∗, w∗ ∈ R ∪ {∞}, and z ∈ [z∗, w]. Then

ρ(z,w) = ln(w, z∗; z,w∗).
Proof. Using Exercise 12, in PSL(2,R) let us choose a transformation

T which maps the geodesic joining z and w to the imaginary axis. By
applying the transformations z 7→ kz (k > 0) and z 7→ −1/z if necessary, we
may assume that T (z∗) = 0, T (w∗) =∞ and T (z) = i. Then T (w) = ri for
some r > 1, and

ρ(T (z), T (w)) =
∫ r

1

dy

y
= ln r.

On the other hand, (ri, 0; i,∞) = r, and the theorem follows from the
invariance of the cross–ration under Möbius transformations, a standard fact
from complex analysis (which can be checked by a direct calculation). �

We will derive several explicit formulas for the hyperbolic distance in-
volving the hyperbolic functions

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
, tanh z =

sinhx

cosh x
.

Theorem 2.13. For z,w ∈ H, we have

(a) ρ(z,w) = ln |z−w|+|z−w||z−w|−|z−w|;

(b) coshρ(z,w) = 1 + |z−w|2
2Im(z)Im(w) ;

(c) sinh[1
2ρ(z,w)] = |z−w|

2(Im(z)Im(w))1/2 ;

(d) cosh[1
2ρ(z,w)] = |z−w|

2(Im(z)Im(w))1/2 ;

(e) tanh[1
2ρ(z,w)] = |z−wz−w |.

Proof. We will prove that (e) holds. By Theorem 2.8, the left–hand
side is invariant under any transformation T ∈ PSL(2,R). By Exercise 13,
the right–hand side is also invariant under any T ∈ PSL(2,R). Therefore if
is sufficient to check the formula for the case when z = i, w = ir, (r > 1).
The right–hand side is equal to (r − 1)/(r + 1). The left–hand side is equal
to tanh[1

2 ln r]. A simple calculation shows that these two expressions are
equal. The other formulas are proved similarly. �

Exercises

11. Prove that if z 6= w, then ρ(z,w) > 0.

12. Let L be a semicircle or a straight line orthogonal to the real
axis which meets the real axis at a point α. Prove that the transformation
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T (z) = −(z−α)−1 + β ∈ PSL(2,R), for an appropriate value of β, maps L
to the positive imaginary axis.

13. Prove that for z,w ∈ H and T ∈ PSL(2,R), we have

|T (z)− T (w)| = |z − w||T ′(z)T ′(w)|1/2.

2.3. Isometries

We have seen that transformations in PSL(2,R) are isometries of the
hyperbolic planeH (Theorem 2.8). The next theorem identifies all isometries
of H in terms of Möbius transformations and symmetry in the imaginary
axis.

Theorem 2.14. The group Isom(H) is generated by Möbius transfor-
mations in PSL(2,R) together with the transformation z 7→ −z. The group
PSL(2,R) is a subgroup of Isom(H) of index two.

Proof. Let ϕ be any isometry ofH. By Theorem 2.11, ϕ maps geodesics
into geodesics. Let I denote the positive imaginary axis. Then ϕ(I) is
a geodesic in H, and according to Exercise 12, there exists an isometry
T ∈ PSL(2,R) that maps ϕ(I) back to I. By applying the transformations
z 7→ kz (k > 0) and z 7→ −1/z, we may assume that g ◦ ϕ fixes i and maps
the rays (i,∞) and (i, 0) onto themselves. Hence, being an isometry, g ◦ ϕ
fixes each point of I. The same (synthetic) argument as in the Euclidean
case shows that

g ◦ ϕ(z) = z or − z. (2.3.1)
Let z1 and z2 be two fixed points on I. For any point z not on I, draw two
hyperbolic circles centered at z1 and z2 and passing through z. These circles
intersect in two points, z and z′ = −z, since the picture is symmetric with
respect to the imaginary axis (note that a hyperbolic circle is a Euclidean
circle in H, but with a different center). Since these circles are mapped
into themselves under the isometry g ◦ ϕ, we conclude that g ◦ ϕ(z) = z or
g ◦ ϕ(z) = −z. Since isometries are continuous (see Excercise 14), only one
of the equations (2.3.1) holds for all z ∈ H. If g ◦ ϕ(z) = z, then ϕ(z) is a
Möbius transformation of the form (2.1.3). If g ◦ ϕ(z) = −z, we have

ϕ(z) =
az + b

cz + d
with ad− bc = −1, (2.3.2)

which proves the theorem. �
Thus we have identified all the isometries of H. The sign of the de-

terminant of the corresponding matrix in (2.1.3) or (2.3.2) determines the
orientation of an isometry. We will refer to transformations in PSL(2,R) as
orientation–preserving isometries and to transformations of the form (2.3.2)
as orientation–reversing isometries.
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Now we will study and classify these two types of isometries of the
hyperbolic plane H.

Orientation–preserving isometries. The classification of matrices in
SL(2,R) in hyperbolic, elliptic, and parabolic depended on the absolute
value of their trace, and hence makes sense in PSL(2,R) as well. A matrix
A ∈ SL(2,R) with trace t is called hyperbolic if |t| > 2, elliptic if |t| < 2,
and parabolic if |t| = 2. Let

T (z) =
az + b

cz + d
∈ PSL(2,R).

The fixed points of T are found by solving the equation

z =
az + b

cz + d
, i.e., cz2 + (d− a)z − b = 0.

We obtain

w1 =
a− d +

√
(a + d)2 − 4
2c

, w2 =
a− d−

√
(a + d)2 − 4
2c

.

We see that if T is hyperbolic, then it has two fixed points in R ∪ {∞},
if T is parabolic, it has one fixed point in R ∪ {∞}, and if T is elliptic,
it has two complex conjugate fixed points, hence one fixed point in H. A
Möbius transformation T fixes ∞ if and only if c = 0, and hence it is in
the form z 7→ az + b (a, b ∈ R, a > 0). If a = 1, it is parabolic; if a 6= 0,
it is hyperbolic and its second fixed point is b/(1 − a). The fixed point wi

of T can be expressed in terms of the eigenvector
(

xi
yi

)
with eigenvalue λi:

wi = xi/yi. In terms of the eigenvalue λi the derivative at the fixed point
wi can be written as itself:

T ′(wi) =
1

(cwi + d)2
=

1
λ2
i

.

Definition. A fixed point w of a transformation f : H → H is called
attracting if |f ′(w)| < 1, and it is called repelling if |f ′(w)| > 1.

Now we are ready to summarize what we know from linear algebra about
different kinds of transformations in PSL(2,R) and describe the action of
Möbius transformations in H geometrically.

1. Hyperbolic case. A hyperbolic transformation T ∈ PSL(2,R)
has two fixed points in R ∪ {∞}, one attracting, denoted by u, the other
repelling, denoted by w. A geodesic in H connecting them is called the axis
of T and is denoted by C(T ). By Theorem 2.11 T maps C(T ) onto itself,
and C(T ) is the only geodesic with this property. Let λ be the eigenvalue
of T with |λ| > 1. Then the matrix of T is conjugate to the diagonal matrix(

λ 0
0 1/λ

)
, which corresponds to the Möbius transformation

Λ(z) = λ2z, (2.3.3)
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i.e., there exists a transformation S ∈ PSL(2,R) such that STS−1 = Λ.
The conjugating transformation S maps the axis of T , oriented from u to
w, to the positive imaginary axis I, oriented from 0 to ∞, which is the axis
of Λ (cf Exercises 12 and 17).

In order to see how a hyperbolic transformation T acts on H, it is useful
to look at the all its iterates T n, n ∈ Z. If z ∈ C(T ), then T n(z) ∈ C(T )
and T n(z) → w as n →∞, while T n(z)→ u as n → −∞. The curve C(T )
is the only geodesic which is mapped onto itself by T , but there are other
T–invariant curves, also “connecting” u and w. For the standard hyperbolic
transformation (2.3.3), the Euclidean rays in the upper half–plane emanating
from the origin are obviously T–invariant. If we define the distance from a
point z to a given geodesic L as infv∈L ρ(z, v), we see that the distance is
measured over a geodesic passing through z and orthogonal to L (Exercise
15). Such rays have an important property: they are equidistant from the
axis C(Λ) = I (see Exercise 16), and hence are called equidistants. Under
S−1 they are mapped onto equidistants for the transformation T , which are
Euclidean circles passing through the points u and w (see Figure 2.3.1).

A useful notion in understanding how hyperbolic transformations act is
that of isometric circle. Since T ′(z) = (cz + d)−2, the Euclidean lengths are
multiplied by |T ′(z)| = |cz + d|−2. They are unaltered in magnitude if and
only if |cz + d| = 1. If c 6= 0, then the locus of such points z is the circle∣∣∣∣z +

d

c

∣∣∣∣ = 1
|c|

with center at −d/c and radius 1/|c|. The circle

I(T ) = {z ∈ H | |cz + d| = 1}
is called the isometric circle of the transformation T . Since its center −d/c
lies in R, we immediately see that isometric circles are geodesics in H. Fur-
ther, T (I(T )) is a circle of the same radius, T (I(T )) = I(T−1), and the
transformation maps the outside of I(T ) onto the inside of I(T−1) and vice
versa (see Figure 2.3.1 and Exercise 18).

0

I 

S

C(T)

u w

Figure 2.3.1. Hyperbolic transformations

If c = 0, then there is no circle with the isometric property: all Euclidean
lengths are altered.
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2. Parabolic case. A parabolic transformation T ∈ PSL(2,R) has
one fixed point in p ∈ R ∪ {∞}. The transformation T has one eigenvalue
λ = ±1 and is conjugate to the transformation P (z) = z + b for some
b ∈ R, i.e., there exists a transformation S ∈ PSL(2,R) such that P =
STS−1. The transformation P is an Euclidean translation, and hence it
leaves all horizontal lines invariant. Horizontal lines are called horocycles for
the transformation P . Under the map S−1 they are sent to invariant curves
(horocycles) for the transformation T . Horocycles for T are Euclidean circles
tangent to the real line at the parabolic fixed point p (see Figure 2.3.2 and
Exercise 20).

b

b = ∞
S

Figure 2.3.2. Parabolic transformations

If c 6= 0, then the isometric circles for T and T−1 are tangent to each
other (see Exercise 19). If c = 0, then there is no unique circle with the
isometric property: since in this case T is an Euclidean translation, all
Euclidean lengths are unaltered.

3. Elliptic case. An elliptic transformation T ∈ PSL(2,R) has a
unique fixed point e ∈ H. It has the eigenvalues λ = cos ϕ + i sin ϕ and
λ = cos ϕ − i sin ϕ, and it is easier to describe its simplest form in the unit
disc model of hyperbolic geometry: U = {z ∈ C | |z| < 1}. The map

f(z) =
zi + 1
z + i

is a homeomorphism of H onto U . The distance in U is induced by means
of the hyperbolic distance in H:

ρ(z,w) = ρ(f−1z, f−1w) (z,w ∈ U).
The readily verified formula

2|f ′(z)|
1− |f(z)|2 =

1
Im(z)

implies that this distance in U is derived from the metric

ds =
2|dz|

1− |z|2 .
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Isometries of U are the conjugates of isometries of H, i.e., we can write

S = f ◦ T ◦ f−1 (T ∈ PSL(2,R)).

Exercise 21 shows that orientation–preserving isometries of U are of the form

z 7→ az + c

cz + a
(a, c ∈ C, aa− cc = 1),

and the transformation corresponding to the standard reflection R(z) = −z
is also the reflection of U in the imaginary axis.

Let us return to our elliptic transformation T ∈ PSL(2,R) that fixes
e ∈ H. Conjugating T by f , we obtain an elliptic transformation of the
unit disc U . Using an additional conjugation by an orientation–preserving
isometry of U if necessary (see Exercise 22), we bring the fixed point to
0, and hence bring T to the form z 7→ e2iϕz. In other words, an elliptic
transformation with eigenvalues eiϕ and e−iϕ is conjugate to a rotation by
2ϕ.

Example 1 . Let z 7→ −1/z be the elliptic transformation given by the

matrix
(

0 −1
1 0

)
. Its fixed point in H is i. It is a transformation of order

2 since the identity in PSL(2,R) is {− 12, 12}, and hence is a half–turn. In

the unit disc model its matrix is conjugate to the matrix
(

i 0
0 −i

)
.

Orientation–reversing isometries. The simplest orientation–rever-
sing isometry of H is the transformation R(z) = −z, which is the reflection
in the imaginary axis I, and hence it fixes I pointwise. It is also a hyper-
bolic reflection in I, i.e., if for each point z we draw a geodesic through z,
orthogonally to I and intersecting I at a point z0, then R(z) = z′ is on
the same geodesic and ρ(z′, z0) = ρ(z, z0). Let L be any geodesic in H and
T ∈ PSL(2,R) be any Möbius transformation. Then the transformation

TRT−1 (2.3.4)
fixes the geodesic L = T (I) pointwise and therefore may be regarded as
a “reflection in the geodesic L”. In fact, it is the well–known geometrical
transformation called inversion in a circle.

Definition. Let Q be a circle in R2 with center K and radius r. Given
any point P 6= K in R2, a point P1 is called inverse to P if

(a) P1 lies on the ray from K to P ,
(b) |KP1| · |KP | = r2.

The relationship is reciprocal: if P1 is inverse to P , then P is inverse
to P1. We say that P and P1 are inverse with respect to Q. Obviously,
inversion fixes all points in the circle Q. Inversion may be described by a
geometric construction (see Exercise 23). We will derive a formula for it.
Let P , P1 and K be the points z, z1, and k in C. Then Definition 2.3 can
be rewritten as



2.3. ISOMETRIES 21

|(z1 − k)(z − k)| = r2, arg(z1 − k) = arg(z − k).

Since arg(z − k) = − arg(z − k), both equations are satisfied if and only if

(z1 − k)(z − k) = r2. (2.3.5)

This gives us the following formula for the inversion in a circle:

z1 =
kz + r2 − |k|2

z − k
. (2.3.6)

Now we are able to prove a theorem for isometries of the hyperbolic
plane similar to a result in Euclidean geometry.

Theorem 2.15. Every isometry of H is a product of not more than three
reflections in geodesics in H.

Proof. By Theorem 2.14 it suffices to show that each transformation
in PSL(2,R) is a product of two reflections. Let

T (z) =
az + b

cz + d
.

First consider the case for which c 6= 0. Then both T and T−1 have well–
defined isometric circles (see Exercise 19). They have the same radius 1/|c|
and their centers are on the real axis at −d/c and a/c, respectively. We will
show that T = R◦RI(T ), where RI(T ) is the reflection in the isometric circle
I(T ), or inversion, and R is the reflection in the vertical geodesic passing
through the midpoint of the interval [−d/c, a/c]. To do this, we use formula
(2.3.5) for inversion:

RI(T )(z) =
−d
cz + 1

c2 −
d2

c2

z + d
c

=
−d(z + d

c ) + 1
c

cz + d
.

The reflection in the line x = (a− d)/2c is given by the formula

R(z) = −z + 2
a− d

2c
.

Combining the two, we obtain

R ◦RI(T ) =
az + b

cz + d
.

Now if c = 0, the transformation T may be either parabolic z 7→ z + b or
hyperbolic z 7→ λ2z + b, each fixing ∞. In the first case the theorem follows
from the Euclidean result for translations. For T (z) = λ2z + b, it is easy to
see that the reflections should be in circles of radii 1 and λ centered at the
second fixed point. �
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Exercises

14. Prove that isometies are continuous maps.

15. (a) Prove that there is a unique geodesic through a point z orthog-
onal to a given geodesic L.

(b)* Give a geometrical construction of this geodesic.
(c) Prove that for z /∈ L, infv∈L ρ(z, v) is achieved on the geodesic de-

scribed in (a).

16. Prove that the rays in H emanating from the origin are equidistant
form the positive imaginary axis I.

17. Let A ∈ PSL(2,R) be a hyperbolic transformation, and B =
SAS−1 (B ∈ PSL(2,R)) be its conjugate. Prove that B is also hyperbolic
and find the relation between their axes C(A) and C(B).

18. Prove that isometric circles I(T ) and I(T−1) have the same radius,
and that the image of I(T ) under the transformation T is I(T−1).

19. Prove that

(a) T is hyperbolic if and only if I(T ) and I(T−1) do not intersect;
(b) T is elliptic if and only if I(T ) and I(T−1) intersect;
(c) T is parabolic if and only if I(T ) and I(T−1) are tangential.

20. Prove that the horocycles for a parabolic transformation with a
fixed point p ∈ R are Euclidean circles tangent to the real line at p.

21. Show that orientation–preserving isometries of U are of the form

z 7→ az + c

cz + a
(a, c ∈ C, aa− cc = 1).

22. Prove that for any two distinct points z1, z2 ∈ H there exists a
transformation T ∈ PSL(2,R) such that T (z1) = z2.

23. Give a geometric construction of inversion in a given circle Q in
the Euclidean plane R2.

24. Prove that the transformation (2.3.4) is an inversion in the circle
corresponding to the geodesic L.

25. Prove that two hyperbolic transformations in PSL(2,R) commute
if and only if their axes coincide.

26. Let A ∈ PSL(2,R) be hyperbolic and B ∈ PSL(2,R) be an elliptic
transformation different from the identity. Prove that AB 6= BA.

27. Using the hyperbolic trigonometric functions, find formulas for the
hyperbolic distance in the disk model, similar to those for the half-plane
model.
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2.4. Hyperbolic area and the Gauss–Bonnet formula

Let T be a Möbius transformation. The differential of T , denoted by
DT , at a point z is the linear map that takes the tangent space TzH onto
TT (z)H and is defined by the 2× 2 matrix

DT =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Theorem 2.16. Let T ∈ PSL(2,R). Then DT preserves the norm in
the tangent space at each point.

Proof. For ζ ∈ TzH, we have DT (ζ) = T ′(z)ζ by Exercise 29. Since

|T ′(z)| = Im(T (z))
Im(z)

=
1

|cz + d|2 ,

we can write

‖DT (ζ)‖ =
|DT (ζ)|
Im(T (z))

=
|T ′(z)||ζ|
Im(T (z))

=
|ζ|

Im(z)
= ‖ζ‖.

�
Corollary 2.17. Any transformation in PSL(2,R) is conformal, i.e.,

it preserves angles.

Proof. It is easy to prove the polarization identity, which asserts that
for any ζ1, ζ2 ∈ TzH we have

〈ζ1, ζ2〉 =
1
2
(‖ζ1‖2 + ‖ζ2‖2 − ‖ζ1 − ζ2‖2);

it implies that the inner product and hence the absolute value of the angle
between tangent vectors is also preserved. Since Möbius transformations
preserve orientation, the corollary follows. �

Let A ⊂ H. We define the hyperbolic area of A by the formula

µ(A) =
∫
A

dxdy

y2

provided this integral exists.

Theorem 2.18. Hyperbolic area is invariant under all Möbius transfor-
mations T ∈ PSL(2,R), i.e., if µ(A) exists, then µ(A) = µ(T (A)).

Proof. When we performed the change of variables w = T (z) in the line
integral of Theorem 2.8, the coefficient |T ′(z)| appeared (it is the coefficient
responsible for the change of Euclidean lengths). If we carry out the same
change of variables in the plane integral, the Jacobian of this map will
appear, since it is responsible for the change of the Euclidean areas. Let
z = x + iy, and w = T (z) = u + iv.

The Jacobian is the determinant of the differential map DT and is cus-
tomarily denoted by ∂(u, v)/∂(x, y). Thus
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∂(u, v)
∂(x, y)

:= det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=
(∂u

∂x

)2
+
(∂v

∂x

)2
= |T ′(z)|2 =

1
|cz + d|4 . (2.4.1)

We use this expression to compute the integral

µ(T (A)) =
∫
T (A)

dudv

v2
=
∫
A

∂(u, v)
∂(x, y)

dxdy

v2

=
∫
A

1
|cz + d|4

|cz + d|4
y2

dxdy = µ(A),

as claimed. �

A hyperbolic triangle is a figure bounded by three segments of geodesics.
The intersection points of these geodesics are called the vertices of the trian-
gle. We allow vertices to belong to R∪{∞}. There are 4 types of hyperbolic
triangles, depending on whether 0, 1, 2, or 3 vertices belong to R∪{∞} (see
Figure 4.4).

Figure 2.4.1. Hyperbolic triangles

The Gauss–Bonnet formula shows that the hyperbolic area of a hyper-
bolic triangle depends only on its angles.

Theorem 2.19 (Gauss-Bonnet). Let ∆ be a hyperbolic triangle with an-
gles α, β, and γ. Then µ(∆) = π − α− β − γ.

Proof. First we consider the case in which one of the vertices of the
triangle belongs to R ∪ {∞}. Since transformations from PSL(2,R) do not
alter the area and the angles of a triangle, we may apply the transformation
from PSL(2,R) which maps this vertex to ∞ and the base to a segment of
the unit circle (as in Figure 2.4.2), and prove the formula in this case.

The angle at infinity is equal to 0, and let us assume that the other
two angles are equal to α and β. Then the angles A0C and B0D are equal
to α and β, respectively, as angles with mutually perpendicular sides (this
theorem from Euclidean geometry does not use the Fifth Postulate and is
therefore true in hyperbolic geometry as well). Assume the vertical geodesics
are the lines x = a and x = b. Then
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A B

C D0

α

α β

β

∆

Figure 2.4.2

µ(∆) =
∫

∆

dxdy

y2
=
∫ b

a
dx

∫ ∞
√

1−x2

dy

y2
=
∫ b

a

dx√
1− x2

.

The substitution x = cos θ (0 ≤ θ ≤ π) gives

µ(∆) =
∫ β

π−α

− sin θdθ

sin θ
= π − α− β.

For the case in which ∆ has no vertices at infinity, we continue the geodesic
connecting the vertices A and B, and suppose that it intersects the real axis
at the point D (if one side of ∆ is a vertical geodesic, then we label its
vertices A and B), and draw a geodesic from C to D. Then we obtain the
situation depicted in Figure 2.4.3.

A

B

C

D

θ π−β
β

α

γ

Figure 2.4.3

We denote the triangle ADC by ∆1 and the triangle CBD by ∆2. Our
formula has already been proved for triangles such as ∆1 and ∆2 since the
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vertex D is at infinity. Now we can write

µ(∆) = µ(∆1)− µ(∆2) = (π − α− γ − θ)− (π − θ − π + β)
= π − α− β − γ,

as claimed. �

Theorem 2.19 asserts that the area of a triangle depends only on its
angles, and is equal to the quantity π − α − β − γ, which is called the
angular defect. Since the area of a nondegenerate triangle is positive, the
angular defect is positive, and therefore, in hyperbolic geometry the sum
of angles of any triangle is less than π. We will also see that there are no
similar triangles in hyperbolic geometry (except isometric ones).

Theorem 2.20. If two triangles have the same angles, then there is an
isometry mapping one triangle into the other.

Proof. If necessary, we perform the reflection z 7→ −z, so that the
respective angles of the triangles ABC and A′B′C ′ (in the clockwise direc-
tion) are equal. Then we apply a hyperbolic transformation mapping A to
A′ (Exercise 22), and an elliptic transformation mapping the side AB onto
the side A′B′. Since the angles CAB and C ′A′B′ are equal, the side AC
will be mapped onto the side A′C ′. We must prove that B is then mapped
to B′ and C to C ′. Assume B′ is mapped inside the geodesic segment AB.
If we had C ′ ∈ [A,C], the areas of triangles ABC and A′B′C ′ would not
be equal, which contradicts Theorem 2.19. Therefore C must belong to the
side A′C ′, and hence the sides BC and B′C ′ intersect at a point X (see Fig.
2.4.4); thus we obtain the triangle B′XB. Its angles are β and π − β since
the angles at the vertices B and B′ of our original triangles are equal (to
β). We see that, in contradiction with Theorem 2.19, the sum of the angles
of the triangle B′XB is at least π. �

A=A’

B’

C’

β

α

γ B
βX

C

Figure 2.4.4
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Exercises

28. Justify the calculations in (2.4.1) by checking that for the Möbius
transformation

w = T (z) =
az + b

cz + d
with z = x + iy, w = u + iv

we have
∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
(these are the classsical Cauchy–Riemann equations) and

T ′(z) =
dw

dz
=

1
2
(
∂w

∂x
− i

∂w

∂y
) =

∂u

∂x
+ i

∂v

∂x
;

(Hint: express x and y in terms of z and z and use the Cauchy–Riemann
equations.)

29. If we identify the tangent space TzH ≈ R2 with the complex plane
C by means of the map (

ξ
η

)
7→ ξ + iη = ζ,

then DT (ζ) = T ′(z)ζ, where in the left–hand side we have a linear transfor-
mation of TzH ≈ R2, and in the right–hand side, the multiplication of two
complex numbers.





Lecture 3

The modular group and its fundamental regions

3.1. Definition of fundamental regions and Fuchsian groups

Let Γ be a subgroup of the group of isometries Isom(H) of the hyperbolic
plane H. We call a subset F ⊂ H a fundamental region for Γ if it satifies
the following conditions:

(a) F is a closed region in H bounded by a finite number of geodesics;
(b) the images T (F ) (T ∈ Γ) cover the entire hyperbolic plane H;
(c) for T1 6= T2, the images T1(F ) and T2(F ) have no interior points in

common.

We will denote the interior of the fundamental region F by
◦
F . Notice that

not every subgroup of Isom(H) has fundamental regions. For instance, the
entire group Isom(H) does not have any.

First let us give a simple example.
Example 2 Let Γ be the cyclic group generated by the transformation

z → 2z. Then the semi-annulus between the circles of radii 1 and 2 shaded in
Figure 3.1.1(a) is easily seen to be a fundamental region for Γ. It is also clear
from this example that a fundamental region is not uniquely determined by
the group: for example, any semi-annulus between circles of radii r and 2r
gives a fundamental region for this group (an example for r = 3/2 is shown
in Figure 3.1.1(b)), but there are many others.

(a) (b)

Figure 3.1.1. Fundamental regions for the group
generated by z → 2z

29
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Besides being a group, PSL(2,R) is also a topological space. More
precisely, SL(2,R) can be identified with the following subset of R4:

X = {(a, b, c, d) ∈ R4 | ad− bc = 1}.

The norm on SL(2,R) is induced from R4: for A =
(

a b
c d

)
with ad−bc = 1,

we define

‖A‖ =
√

a2 + b2 + c2 + d2, (3.1.1)
and SL(2,R) is given the topology induced by the metric

d(A,B) = ‖A−B‖. (3.1.2)
Since A ∼ −A is an equivalence relation on SL(2,R), the quotient space
SL(2,R)/∼ = PSL(2,R), is topologized with the quotient topology. Exer-
cise 30 shows that in fact PSL(2,R) is a topological group. Since (2.3.2) im-
plies that orientation–reversing isometries are given by matrices in GL(2,R)
with determinant −1, it follows that the whole group of isometries Isom(H)
can be topologized using the same distance. Notice that since ‖A‖ = ‖−A‖,
the norm (3.1.1) is a well–defined function on PSL(2,R), while the metric
(3.1.2) is not. One natural way to introduce a metric on PSL(2,R) is to
represent it as a matrix group S0o(2, 1), the other is via the so–called chord
metric on the unit disc, obtained from the Euclidean metric on the unit
sphere by means of the stereographic projection, but both are beyond the
scope of these notes.

Convergence in PSL(2,R) can be expressed in matrix language as fol-
lows. If gn → g is in PSL(2,R), then there exist matrices An ∈ SL(2,R)
representing gn such that limn→∞ ‖An −A‖ = 0.

Definition. A subgroup Γ of Isom(H) is called discrete if Tn → Id
(Tn ∈ Γ) implies Tn = Id for sufficiently large n.

Remark. It is clear that if Γ ⊂ Isom(H) is discrete, then so are all sub-
groups of Isom(h) conjugate to it, i.e., for every T ∈ Isom(H), the subgroup
T−1ΓT is discrete.

Definition. Any discrete subgroup of PSL(2,R) is said to be a Fuch-
sian group.

Example 3 For an elliptic γ0 ∈ PSL(2,R), the group Γ = 〈γ0〉 is a
Fuchsian group if and only if it is finite. In other words, Γ is Fuchsian if the
eigenvalue λ of γ0 is equal to eπn/m for some integers n and m, or if γ0 is
conjugate to a rotation by a rational multiple of 2π.

Example 4 If γ0 ∈ PSL(2,R) is parabolic, then Γ = 〈γ0〉 is a Fuchsian
group. It is sufficient to look at the case in which γ0(z) = z + 1. Assume
that there is a sequence γn ∈ Γ such that γn → Id in PSL(2,R). Then there
are matrices An ∈ SL(2,R) representing gn for which An → 12. Therefore
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there exists an N > 0 such that for all n > N we have An =
(

1 an
0 1

)
. But

then ‖An − 12 ‖ → 0 as n→∞, so that an → 0, and since an is an integer,
this implies that for n large enough we have an = 0, i.e., An = 12.

Example 5 If γ0 ∈ PSL(2,R) is hyperbolic, then Γ = 〈γ0〉 is a Fuchsian
group. Again, it is sufficient to look at the case in which γ0 is in the standard
form, i.e., γ0(z) = λ2z, where λ 6= 1. If γn ∈ Γ satisfies γn → Id in
PSL(2,R), we choose matrices

An =
(

λan 0
0 λ−an

)
∈ SL(2,R)

representing gn so that An → 12. But then ‖An−12 ‖ → 0 as n→∞, hence
λan → 1, λ−an → 1. Since λ > 1 and an is an integer, this implies that
an = 0 for n large enough, i.e., An = 12.

Discrete subgroups of Isom(H) have the following important property,
which we state without proof.

Theorem 3.21. A subgroup Γ ⊂ Isom(H) is discrete if and only if it
acts on H properly discontinuously, i.e., so that the orbit of each point z,
Γz = {x ∈ H | x = γ(z) for some γ ∈ Γ}, has no accumulation point in H.

Example 6 Let us consider the group consisting of all transformations

z 7→ az + b

cz + d
(a, b, c, d ∈ Z, ad− bc = 1).

It is called the modular group and is denoted by PSL(2,Z). Let(
an bn
cn dn

)
→ 12 .

Then an → 1, bn → 0, cn → 0, and dn → 1. Since an, bn, cn, dn are integers,
this implies that there exists an N > 0 such that for all n > N we have
an = 1, bn = 0, cn = 0, and dn = 1, i.e.,(

an bn
cn dn

)
= 12 .

Therefore PSL(2,Z) is a discrete subgroup of PSL(2,R), i.e., a Fuchsian
group.

Theorem 3.22. Suppose F1 and F2 are two fundamental regions for a
Fuchsian group Γ, and the area of F1, µ(F1) is finite. Then µ(F2) = µ(F1).

Proof. Since the boundary of each fundamental region consists of
finitely many geodesics, we have µ(

◦
F i) = µ(Fi), i = 1, 2. Now

F1 ⊇ F1 ∩ (
⋃
T∈Γ

T (
◦
F 2)) =

⋃
T∈Γ

(F1 ∩ T (
◦
F 2)).
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Since
◦
F 2 is the interior of a fundamental region, the sets F1 ∩ T (

◦
F 2) are

disjoint, and since µ is PSL(2,R)-invariant, we have

µ(F1) ≥
∑
T∈Γ

µ(F1 ∩ T (
◦
F 2)) =

∑
T∈Γ

µ(T−1(F1) ∩
◦
F 2) =

∑
T∈Γ

µ(T (F1) ∩
◦
F 2).

Since F1 is a fundamental region, we have⋃
T∈Γ

T (F1) = H, and
⋃
T∈Γ

(T (F1) ∩
◦
F 2) =

◦
F 2.

Hence ∑
T∈Γ

µ(T (F1) ∩
◦
F 2) ≥ µ(

⋃
T∈Γ

T (F1) ∩
◦
F 2) = µ(

◦
F 2) = µ(F2)

Interchanging F1 and F2, we obtain µ(F2) ≥ µ(F1); so hence µ(F2) = µ(F1).
�

Thus we have proved a very important fact: the area of a fundamental
region, if it is finite, is a numerical invariant of the group Γ. Examples 3, 4,
and 5 give Fuchsian groups with fundamental regions of infinite area. Ob-
viously, any compact fundamental region has a finite area, although groups
with such fundamental regions are not easy to construct. Noncompact re-
gions may also have finite area. A very important example of this kind,
involving Γ = PSL(2,Z), will be discussed in detail in §3.2.

Theorem 3.23. Let Γ be a discrete group of isometries of the upper
half-plane H, and Λ be a subgroup of Γ of index n. If

Γ = ΛT1 ∪ ΛT2 ∪ · · · ∪ ΛTn

is a decomposition of Γ into Λ-cosets and if F is a fundamental region for
Γ, then

(i) F1 = T1(F ) ∪ T2(F ) ∪ · · · ∪ Tn(F ) is a fundamental region for Λ,
(ii) if µ(F ) is finite and the hyperbolic area of the boundary of F is zero,

then µ(F1) = nµ(F ).

Proof of (i). Let z ∈ H. Since F is a fundamental region for Γ, there
exist w ∈ F and T ∈ Γ such that z = T (w). We have T = STi for some
S ∈ Λ and some i with 1 ≤ i ≤ n. Therefore

z = STi(w) = S(Ti(w)).
Since Ti(w) ∈ F1, the point z is in the Λ-orbit of some point of F1. Hence
the union of the images of F1 under the action of elements of Λ is H.

Now suppose that z ∈
◦
F 1 and that S(z) ∈

◦
F 1, for S ∈ Λ. We must prove

that S = Id. Let ε > 0 be so small that Bε(z) (the open hyperbolic disc

of radius ε centered at z) is contained in
◦
F 1. Then Bε(z) has a nonempty

intersection with exactly k of the images of
◦
F under the maps T1, · · · , Tn,



3.2. CONSTRUCTION OF FUNDAMENTAL REGIONS 33

where 1 ≤ k ≤ n. Suppose these images are Ti1(
◦
F ), · · · , Tik(

◦
F ). Suppose

the set Bε(S(z)) = S(Bε(z)) has a nonempty intersection with Tj(
◦
F ) say,

1 ≤ j ≤ n. It follows that Bε(z) has a nonempty intersection with S−1Tj(
◦
F ),

so that S−1Tj = Ti1 , where 1 ≤ 1 ≤ k. Hence

ΛTj = ΛS−1Tj = ΛTi1 ,

which implies that Tj = Ti1 and S = Id. Thus
◦
F 1 contains precisely one

point of each Λ-orbit. �

Proof of (ii). This follows immediately since µ(T (F )) = µ(F ) for all
T ∈ PSL(2,R), and µ(Ti(F ) ∩ Tj(F )) = 0 for i 6= j. �

Exercises

30. Prove that group multiplication and taking inverses are continuous
with respect to the topology on PSL(2,R).

3.2. Construction of fundamental regions

Suppose Γ is an arbitrary Fuchsian group and the point p ∈ H is not
fixed by any element of Γ − {Id}. We define the Dirichlet region for Γ
centered at p to be the set

Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(z, T (p)) for all T ∈ Γ}. (3.2.1)

For each fixed T1 ∈ PSL(2,R),

{z ∈ H} | ρ(z, p) ≤ ρ(z, T1(p))} (3.2.2)

is the set of points z which are closer in the hyperbolic metric to p than
to T1(p). Clearly, p ∈ Dp(Γ), and since the Γ-orbit of p is discrete, Dp(Γ)
contains a neighborhood of p. In order to describe the set (3.2.2), we connect
the points p and T1(p) by a geodesic segment and construct the line given
by the equation ρ(z, p) = ρ(z, T1(p)).

Definition. The perpendicular bisector of the geodesic segment [z1, z2]
is the unique geodesic through w, the mid-point of [z1, z2], orthogonal to
[z1, z2] (Figure 3.2.1).

Lemma 3.24. The line given by the equation

ρ(z, z1) = ρ(z, z2) (3.2.3)

is the perpendicular bisector of the geodesic segment [z1, z2].
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T (p)1

p

H (T )1p

L (T )1p

Figure 3.2.1

Proof. We may assume that z1 = i, z2 = ir2 with r > 0; then w = ir
and the perpendicular bisector is given by the equation |z| = r. On the
other hand, by Theorem 2.13(b), relation (3.2.3) is equivalent to

|z − z1|2
y

=
|z − z2|2

r2y

which simplifies to |z| = r. �

We denote the perpendicular bisector of the geodesic segment [p, T1(p)]
by Lp(T1), and the hyperbolic half-plane containing p described in (3.2.2)
by Hp(T1) (see Figure 3.2.1). Thus Dp(Γ) is the intersection of hyperbolic
half-planes,

Dp(Γ) =
⋂

T∈Γ, T 6=Id

Hp(T ),

and thus is a hyperbolically convex region.

Theorem 3.25. If p is not fixed by any element of Γ−{Id}, then Dp(Γ)
is a connected fundamental region for Γ.

Proof. Let z ∈ H, and Γz be its Γ-orbit. Since Γz is a discrete set,
there exists a z0 ∈ Γz with the smallest value of ρ(z0, p). Then we have
ρ(z0, p) ≤ ρ(T (z0), p) for all T ∈ Γ. By the invariance of the hyperbolic
metric under PSL(2,R), the region in (3.2.1) can also be defined as
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Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(T (z), p) for all T ∈ Γ}. (3.2.4)

Therefore z0 ∈ Dp(Γ). Thus Dp(Γ) contains at least one point from every
Γ-orbit.

Next we show that if z1, z2 are in the interior of Dp(Γ), then they cannot
lie in the same Γ-orbit. If ρ(z, p) = ρ(T (z), p) for some T ∈ Γ − {Id}, then
ρ(z, p) = ρ(z, T−1(p)) and hence z ∈ Lp(T−1). Then either z 6∈ Dp(Γ) or z
lies on the boundary of Dp(Γ); hence if z is in the interior of Dp(Γ), so that
ρ(z, p) < ρ(T (z), p) for all T ∈ Γ−{Id}. If two points z1, z2 lie in the same Γ–
orbit, we have ρ(z1, p) < (z2, p) and ρ(z2, p) < (z1, p), a contradiction. Thus
the interior of Dp(Γ) contains at most one point in each Γ-orbit. Being the
intersection of closed half-planes, Dp(Γ) is closed and convex. Thus Dp(Γ)
is path-connected, hence connected. �

Example 7 Let Γ = PSL(2,Z). It is easy to check that the point
p = ki (k > 1) is not fixed by any nonidentity element of Γ. We are going
to show that the Dirichlet region Dp(Γ) is the set F ,

F =
{

z ∈ H | |z| ≥ 1,Re(z) ≤ 1
2

}
is illustrated in Figure 3.2.2.

0 1/2 1-1/2-1

i

p=ki

Figure 3.2.2. Fundamental region for SL(2,Z)

The isometries T and S, where T (z) = z+1, and S(z) = −1/z, are in G,
and the geodesic sides of F are the perpendicular bisectors of the segments
[p, T (p)], [p, T−1(p)], and [p, S(p)] respectively. This shows that Dp ⊂ F .

Suppose Dp 6= F , then there exists a point z ∈
◦
F and T ∈ Γ such that

T (z) ∈
◦
F . We write
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T (z) =
az + b

cz + d
(a, b, c, d ∈ Z, ad− bc = 1).

Then

|cz + d|2 = c2|z|+ 2Re(z)cd + d2 > c2 + d2 − |cd| = (|c| − |d|)2 + |cd|,
since |z| > 1 and Re(z) > −1/2. The lower bound is nonnegative integer. It
cannot be 0 since this would imply c = d = 0, which contradicts the equality
ad− bc = 1. Therefore it is at least 1, so that |cz + d| > 1, and thus

Im T (z) =
Im(z)
|cz + d|2 < Im(z).

The same argument with z and T replaced by T (z) and T−1 gives us the
reverse inequality, Im(z) < Im(T (z), a contradiction. Therefore Dp(Γ) = F .
The fundamental region F is a hyperbolic triangle with angles π/3, π/3, 0.
By the Gauss-Bonnet formula (Theorem 2.19), its area is finite and is equal
to π − (2π/3) = π/3.

There is an alternative method of constructing fundamental regions.
Since it is related to the isometric circle, it is more convenient to describe
it for the unit disc model of the hyperbolic plane. Let Γ be a discrete
group of orientation–preserving isometries of the unit circle U . We assume
that 0 is not an elliptic fixed point, i.e., that for all the transformations
T (z) = (az + c)/(cz + a) in the group Γ, c 6= 0. Let R0 be the locus of
points exterior to the isometric circles of all elements in Γ different from the
identity,

R0 =
⋂

T∈Γ−{Id
}Î(T ) ∩ U .

Theorem 3.26. The set R0 defined by the above formula is a fundamen-
tal region for Γ.

Proof. We will prove that R0 is actually the Dirichlet region centered
at the point 0, D0(Γ). This will follow immediately from the fact that for
any T ∈ Γ, the perpendicular bisector of the segment [0, T (0)] is the the
isometric circle I(T−1). We are using the formula for the unit disc model:

cosh2
[
1
2
ρ(z,w)

]
=

|1− zw|2
(1− |z|2)(1− |w|2) ,

which is the counterpart of formula (b) from Theorem 2.13. The perpendic-
ular bisector is given by the equation ρ(z, 0) = ρ(z, c/a), which is equivalent
to

1
(1− |z|)2

=
|1− z ca |

(1− |z|)2(1− |c|2|a|2 )
,



3.2. CONSTRUCTION OF FUNDAMENTAL REGIONS 37

and ultimately to |−cz+a| = 1, which is the equation of the isometric circle
I(T−1). �

Theorem 3.27. Suppose an infinite sequence of distinct isometric circles
I1, I2, · · · of transformations of a Fuchsian group Γ with radii r1, r2, · · · is
given. Then we have lim

n→∞
rn = 0.

Proof. The transformations are of the form

T (z) =
az + c̄

cz + ā
(a, c ∈ C, |a|2 − |c|2 = 1). (3.2.5)

Recall that the radius of I(T ) is equal to 1/|c|. Let ε > 0 be given. There are
only finitely many T ∈ Γ with |c| < 1/ε. This follows from the discreteness
of Γ and the relation |a|2 − |c|2 = 1. Hence there are only finitely many
T ∈ Γ with I(T ) of radius exceeding ε, and the theorem follows. �

It is a general fact that elements of the group Γ which identify the sides
of the Dirichlet fundamental region generate the group Γ. In particular, for
the modular group, we have the following theorem.

Theorem 3.28. The group PSL(2,Z) is generated by two elements,
T (z) = z + 1 and S(z) = −1/z.

Proof. (Suggested by A. Mezhirov.) Let g(z) = az+b
cz+d be a transforma-

tion in PSL(2,Z). We will show that it can be represented as the composi-
tion of a finite number of transformations T , T−1, and S. Since ad− bc = 1,
the integers a and c are relatively prime or one of them is equal to 0. If
a = 0, either b = −1, c = 1, or vice versa. In the first case T−dS ◦ g = 12,
and hence g = S ◦ T d, and in the second, g = S ◦ T−d. Similarly, if c = 0,
g(z) = z + b, or g(z) = z − b, i.e., g = T b, or g = T−b.

Now assume a, c 6= 0. The algorithm of factorization of the matrix
corresponding to g is essentially the Euclidean algorithm for finding the
greatest common divisor of |a| and |c|, which in this case is equal to 1. We
may assume that c > 0. If |a| ≥ c, we can write |a| = qc + r, where q, r are
positive integers and r < c. If a > 0, then we apply T−q to g to obtain the
transformation

T−q ◦ g(z) =
rz + b′

cz + d
,

and by applying S, we obtain

S ◦ T−q ◦ g(z) =
−cz − d

rz + b′
.

If a < 0, we apply S ◦ T q to g to obtain

S ◦ T q ◦ g(z) =
−cz − d

rz − b′′
.
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In both cases, after the first step, we obtain the transformation given by
(a1z + b1)/(c1z + d1) with |a1| ≥ |c1|, and |a1| < |a|. In finitely many steps
we arrive at the transformation (anz + bn)/(cnz + dn) with an = ±1 and
cn = 0, and this case has been already considered above. If |a| < |c|, we
first apply the transformation S to reduce the problem to the case already
considered. �

Exercises

31. Let Γ(2) be the subgroup of PSL(2,Z) which consists of transfor-
mations z → (az + b)/(cz + d) for which a ≡ d ≡ 1 (mod 2) and b ≡ d ≡ 0
(mod 2). Prove that Γ(2) is a subgroup of PSL(2,Z) of index 6. Prove that
Γ(2) is discrete and is generated by the transformations

A(z) = z + 2 and B(z) =
z

2z + 1
,

and find its Dirichlet fundamental region centered at p = i.
32. Show that the Dirichlet region can be described by using the

Euclidean metric via the following formula:

Dp(Γ) =
{

z ∈ H |
∣∣∣∣T (z)− p

z − p

∣∣∣∣ ≥ 1
|cz + d| for all T ∈ Γ

}
.

33. Prove that
(i) T is hyperbolic if and only if I(T ) and I(T−1) do not intersect;
(ii) T is elliptic if and only if I(T ) and I(T−1) intersect;
(iii) T is parabolic if and only if I(T ) and I(T−1) are tangential.
34. Let Γ be the group acting on H generated by the transformations

f(z) = 2z, g(z) =
3z + 4
2z + 3

.

Prove that Γ is discrete and find a Dirichlet fundamental region F for Γ.



Lecture 4

Coding closed geodesics on the modular surface

4.1. The modular surface and closed geodesics

The quotient Γ\H of the hyperbolic plane H by the modular group
Γ = SL(2,Z) is said to be the modular surface. Let F be a fundamental
region for Γ, and π : H → Γ\H be the natural projection (continuous
and open). The points of Γ\H are the Γ–orbits. The restriction of π to F
identifies the congruent points of F (which necessarily belong to its boundary
∂F ) and takes Γ\F to an oriented surface with possibly some marked points
(which correspond to the elliptic cycles of F ) and cusps (which correspond
to noncongruent vertices at infinity of F ). Such a surface is known as an
orbifold. Its topological type is determined by the number of cusps and by
its genus, i.e., the number of handles in the surface viewed as a sphere with
handles. If F is a Dirichlet fundamental region, the quotient space Γ\H is
homeomorphic to Γ\F .

We haveseen in §3.1 (Theorem 3.22) that the area of a fundamental
region (with nice boundary) is, if finite, a numerical invariant of the group
Γ. Since the area in the quotient space Γ\H is induced by the hyperbolic area
in H, the hyperbolic area of Γ\H, denoted by µ(Γ\H), is well defined and
equal to µ(F ) for any fundamental region F . If Γ has a compact Dirichlet
region F , then F has finitely many sides, and the quotient space Γ\H is
compact (in this case, Γ is called co-compact). If one Dirichlet region for
Γ is compact, then all Dirichlet regions are compact. If, in addition, Γ
acts on H without fixed points, Γ\H is a compact Riemann surface–a 1-
dimensional complex manifold–and its fundamental group is isomorphic to
Γ. The above–mentioned material is discussed in detail in [3].

We shall view the standard fundamental region F for SL(2,Z) as a
quadrilateral, rather than a triangle, with the point i dividing the circular
side of the boundary into two parts, left and right (see Fig. 3.2.2). Under
the projection π, the left vertical side is identified with the right one by the
transformation T (z) = z + 1, and the left circular side is identified with the
right one by the transformation S(z) = −1/z. After the identifications, we
obtain a topological sphere with two marked points corresponding to elliptic
elements of order 2 and 3, and one cusp at infinity.

The tangent bundle to H is defined by

TH = {(z, ζ) | z ∈ H, ζ ∈ TzH},
39
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and the unit tangent bundle is defined by

SH = {(z, ζ) | z ∈ H, ζ ∈ TzH, ‖ζ‖ = 1},
where ‖ · ‖ is the norm in TzH introduced in Section 2.1.

By Theorem 2.16, the group PSL(2,R) acts on TH by differentials:

T (z, ζ) = (T (z),DTz(ζ)), (4.1.1)

this action being induced by the action on H by Möbius transformations.

Theorem 4.29. There is a homeomorphism between PSL(2,R) and the
unit tangent bundle SH of the upper-half plane H such that the action
of PSL(2,R) on itself by left multiplications corresponds to the action of
PSL(2,R) on SH (4.1.1).

Proof. Let (i, ζ0) be a fixed element of SH, where Z0 is the unit vector
at the point i tangent to the imaginary axis and pointed upwards, and
let (z, ζ) be an arbitrary element of SH. By Exercise 12, there exists a
unique transformation T ∈ PSL(2,R) sending the imaginary axis to the
geodesic passing through z and tangent to ζ, and satisfying T (i) = z. Then
DTi(ζ0) = ζ, and hence,

T (i, ζ0) = (z, ζ). (4.1.2)
The map (z, ζ) 7→ T is a homeomorphism between SH and PSL(2,R) (see
Exercise 35).

For S ∈ PSL(2,R), let S(z, ζ) = (z′, ζ ′). By (4.1.2), S(z, ζ) = ST (i, ζ0).
Hence the element S(z, ζ) is identified with the transformation ST , and the
last assertion follows. �

Proposition 4.30. Closed geodesics on the modular surface M = Γ\H
are in one–to–one correspondence with conjugacy classes of hyperbolic ele-
ments in Γ.

Proof. Recall that a hyperbolic transformation T ∈ PSL(2,R) has two
fixed points in R ∪ {∞}, one attracting, denoted by u, the other repelling,
denoted by w. Let z be any point on the axis of T , the geodesic in H from
u to w, which we denoted by C(T ), and let ζ be the unit vector tangent
to C(T ). Then T (z) ∈ C(T ), and by Exercise 36, DT (ζ) is the unit vector
tangent to C(T ) at the point T (z). This means that the geodesic C(T ) will
be closed on M .

Conversely, suppose C is a closed oriented geodesic on M . Let us lift it to
H, and assume that it intersects the given fundamental region F (otherwise
we apply a transformation from PSL(2,Z) to move it there). We follow the
geodesic in its direction from u to w, and as soon at it reaches a side of ∂F ,
apply a transformation identifying this side with its image. Thus we obtain
a geodesic on F , which closes up after finitely many steps. This means that
there exists a finite string of generators of PSL(2,Z), namely T, T−1, S, such
that after their successive application we return to our original geodesic,
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i.e., for some γ0 ∈ PSL(2,Z), we have γ0(C) = C. If follows from the
classification of elements in PSL(2,Z) that γ0 is hyperbolic, and that C is
its axis, and that z ∈ C implies that γn0 (z) tends to u as n → ∞, not to
w. Therefore, if we want a hyperbolic element whose axis is the oriented
geodesic C, we must take γ = γ−1

0 . Axes of transformations conjugate in
PSL(2,Z) produce the same closed geodesic on M . �

The element γ described above, which fixes a closed oriented geodesic
C, is a “word” in the generators T, T−1, S. It is easy to see that it must
contain at least one S, an S cannot be followed by another S, and a T
cannot be followed by a T−1 and vice versa. Thus it is a sequence of blocks,
defined up to a cyclic permutation, consisting of T ’s and T−1’s that are
separated by S’s. If we choose the initial point on the circular part a1 ∪ a2

of the boundary of F , we see that the sequence always ends by an S. To each
block of T ’s we assign a positive integer equal to its length, and to each block
of T−1’s, we assign a negative integer whose absolute value is equal to its
length. Thus we obtain a finite sequence of integers [n1, n2, . . . , nm], defined
up to a cyclic permutations, called the geometric code of C. It is clearly
PSL(2,Z)–invariant and therefore we will refer to it also as the geometric
code of the conjugacy class of γ and denote it by [γ]. Moreover, we have
γ = T n1Sn2S · T nmS.

A convenient way to obtain the geometric code of C is to count the
number of times C hits the vertical sides of the boundary of F , so that a
positive integer is assigned to each block of hits on the right vertical side,
and a negative one, to each block of hits on the left vertical side.

Fig. 4.1.1 shows the closed geodesic in F for the matrix

A =
(

15 −8
2 −1

)
.

Following the closed geodesic in F , we obtain its geometric code [A] =
[6,−2].

The coding sequence of a geodesic passing through the vertex ρ of F in
the clockwise direction obeys the convention that it must exit F through
the right vertical side. The axis of

A4 =
(

4 −1
1 0

)
,

passing through the vertex ρ, and the corresponding closed geodesic in F ,
are shown in Fig. 4.1.2. According to our convention, its geometric code is
[4].

Exercises

35. Prove that the map (z, ζ) 7→ T described in Theorem 4.29 is a
homeomorphism.

36. Let L be a geodesic on H and ζ be the unit tangent vector to L at
the point z ∈ L. Prove that under a Möbius transformation T ∈ PSL(2,R),
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Figure 4.1.1. Closed geodesic in F
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Figure 4.1.2. Closed geodesic in F corresponding to A4

the vector DT (ζ) is the unit tangent vector to the geodesic T (L) at the
point T (z).

4.2. Arithmetic coding of closed geodesics

We have seen in Lecture 1 that the minus continued fraction expansion
of a quadratic irrationality is eventually periodic. Our goal is to prove that



4.2. ARITHMETIC CODING OF CLOSED GEODESICS 43

two matrices in SL(2,Z) are conjugate in SL(2,Z) if and only if the periods
of their minus continued fraction expansions differ by a cyclic permutation.

Proposition 4.31. Two quadratic irrationalities are obtained from one
another by an application of a transformation from SL(2,Z) if and only if the
periods in their minus continued fraction expansions are cyclic permutations
of one another.

Proof. If two quadratic irrationalities have periods in their minus con-
tinued fraction expansions, which are cyclic permutations of one another,
one can be obtained from the other by consecutive applications of trans-
formations T (z) = z + 1, T−1(z) = z − 1, and S(z) = −1/z. Since those
transformations are in SL(2,Z), the claim in this direction follows.

Since the transformations S and T generate SL(2,Z) (see Theorem 3.28),
it is sufficient to prove the converse only for these particular transformations.
Let w be a quadratic irrationality:

w = (n0, n1, . . . , nk, nk+1, . . . , nk+m).

This representation is not unique: we can extend the part before the period
by adding a period to it if we need to. Then obviously

T±1(w) = (n0 ± 1, n1, . . . , nk, nk+1, . . . , nk+m).

In order to deal with S, we first notice that if n0 ≥ 2, then

S(w) = (0, n0, n1, . . . , nk, nk+1, . . . , nk+m)

which is a legitimate minus continued fraction expansion. We recall that
the following relations between S and T hold (in fact, these relations define
SL(2,Z), but we do not use this here):

S2 = Id, STSTST = Id,

where Id denotes the identity transformation. In the next argument we use
the following consequences of the second relation:

STS = T−1ST−1, ST−1S = TST ;

further, for p ≥ 2 we have

ST−pS = TS T 2S . . . T 2S︸ ︷︷ ︸
p−1 times

T.

If n0 ≤ −1, we obtain

S(w) = (1, 2, . . . , 2︸ ︷︷ ︸
−n0−1 times

, n1 + 1, n2, . . . , nk, nk+1, . . . , nk+m).

If n0 = 0, we can write

S(w) = (n1, . . . , nk, nk+1, . . . , nk+m).

Now let n0 = 1. If n1 ≥ 3, we have

S(w) = (−1, n1 − 1, n2, . . . , nk, nk+1, . . . , nk+m).
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Since w is irrational, there is an ni in the period that is greater than 2, so
we suppose that ns ≥ 3, and ni = 2 for all 1 ≤ i ≤ s− 1. Then

S(w) = (−s, ns − 1, . . . , nk, nk+1, . . . , nk+m),

concluding the proof of the proposition. �

The following lemma holds for all Fuchsian groups.

Lemma 4.32. Let Γ be a Fuchsian group, and let γ1, γ2 ∈ Γ be hyperbolic
elements having a common fixed point. Then their second fixed points also
coincide, hence they have the same axis, and both are powers of a primitive
matrix with the same axis.

Proof. After a standard conjugation, we may assume that both γ1 and
γ2 fix ∞, so

γ1(z) = λz (λ > 1) and γ2(z) = µz + k (µ 6= 1, k 6= 0).

Then
γ−n1 γ2γ

n
1 (z) = λ−n(µ(λnz) + k) = µz + λ−nk.

Hence ‖γ−n1 γ2γ
n
1 ‖ =

√
µ2 + λ−2nk2 + 1 is bounded as n tends to ∞, and

so the sequence {γ−n1 γ2γ
n
1 } contains a converging subsequence of distinct

terms, a contradiction with the fact that Γ is discrete. Therefore k = 0, and
so both γ1 and γ2 fix 0. �

Theorem 4.33. Two hyperbolic matrices A and B in SL(2,Z) with the
same trace are conjugate in SL(2,Z) if and only if their attracting (repelling)
fixed points have periods in their minus continued fraction expansions that
are cyclic permutations of one another.

Proof. Let wA and wB be attracting fixed points of A and B, respec-
tively, such that the periods in their minus continued fraction expansion
differ by a cyclic permutation. Then by Proposition 4.31 there exists a
C ∈ SL(2,Z) such that wA = CwB . Then the matrices CBC−1 and A have
the same fixed point wA, and by Lemma 4.32, since they have the same trace,
either CBC−1 = A or CBC−1 = A−1. But both wA and wB are attracting,
wA is attracting for both, A and CBC−1, and therefore CBC−1 = A.

Conversely, suppose two matrices in SL(2,Z) are conjugate. Then their
attracting fixed points wA and wB are obtained from each other by an
application of a matrix C from SL(2,Z). Then by Proposition 4.31, the
periods in the minus continued fraction expansions of wA and wB differ by
a cyclic permutation. �

Thus, we have obtained a PSL(2,Z)–invariant of closed geodesics on
M , namely, the period of the minus continued fraction expansions of their
attracting fixed points (determined up to a cyclic permutation), i.e., a finite
sequence of integers (n1, n2, . . . , nm) defined up to a cyclic permutation,
called its arithmetic code.
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Exercises

37. Find the arithmetic code of the matrix

A =
(

15 −8
2 −1

)
and compare it with its geometric code.

4.3. Gauss Reduction Theory in matrix language

To any hyperbolic matrix

A =
(

a b
c d

)
∈ SL(2,Z)

we associate the integral binary quadratic form

QA(x, y) = cx2 + (d− a)xy − by2 (4.3.1)
with discriminant D = (a + d)2 − 4 > 0 (such forms are called indefinite).
It is easy to see that D is not a perfect square (Exercise 38).

Conversely, to each integral indefinite binary quadratic form Q(x, y) =
Ax2+Bxy+Cy2 whose discriminant D = B2−AC > 0 is not a perfect square
(we assume that the integers A,B,C have no common factor) we associate a
geodesic on H connecting the roots of the corresponding quadratic equation

Az2 + Bz + C = 0.

Its image in M = PSL(2,Z)\H is closed since there exists a hyperbolic
matrix U ∈ SL(2,Z) with the same axis (this is not immediately obvious
and rather delicate, see Exercise 41).

We introduce the following equivalence relation on the set of all integral
binary quadratic forms with the same discriminant.

Definition. Two integral binary quadratic forms

Q1(x, y) = A1x
2 + B1xy + C1y

2 and Q2(x, y) = A2x
2 + B2xy + C2y

2

are said to be equivalent in the narrow sense if there is a matrix(
a b
c d

)
∈ SL(2,Z)

such that Q2(ax + by, cx + dy) = Q1(x, y).

The Gauss Reduction Theory for integral indefinite binary quadratic
forms allows to determine when two quadratic forms with the same dis-
criminant are equivalent in the narrow sense. It is easy to check that two
hyperbolic matrices with the same trace are conjugate in SL(2,Z) if and
only if the corresponding quadratic forms (with the same discriminant) are
equivalent in the narrow sense (Exercise 42). Thus the two theories are
equivalent. Gauss’s notion of “reduced” binary quadratic form translates
into the following notion of “reduced” matrix, which is not connected with
any particular fundamental region.
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Definition. A hyperbolic matrix in SL(2,Z) is called reduced if its
attracting and repelling fixed points, denoted by w and u respectively, satisfy

w > 1, 0 < u < 1.

Theorem 4.34. [Reduction Algorithm.] There is a finite number of re-
duced matrices in SL(2,Z) with a given trace t, |t| > 2. Any hyperbolic
matrix in SL(2,Z) with trace t can be reduced by a finite number of stan-
dard conjugations. Applied to a reduced matrix A, this conjugation gives
another reduced one. Any reduced matrix conjugate to A is obtained from
A by a finite number of standard conjugations. Thereby the set of reduced
matrices is decomposed into disjoint cycles of conjugate matrices.

Proof. The proof of the first assertion is an adaptation for matrices of
the proof in [5]. Suppose the matrix

A =
(

a b
c d

)
is reduced. Let k = a − d − 2c. By Exercise 39, we have |k| <

√
D, hence

k can take only finitely many values for a given D = t2 − 4. We have
D − k2 = 4c(a + b − c − d) > 0, therefore c |(D − k2)/4 can also take only
finitely many values. We can express a, b, and d in terms of c and k as
follows:

a =
t + k + 2c

2
, b =

D − k2

4c
− (k + c), d =

t− k − 2c
2

,

thus the number of reduced matrices with given trace t is finite, and the
first assertion of the theorem is proved.

Consider the attracting fixed point of A; it has a minus continued frac-
tion expansion of the form

(n0, n1, . . . , nk, nk+1, . . . , nk+m),

where the notations are as in Lecture 1. Conjugating A by S−1T−n0, we
obtain a matrix A0 = S−1T−n0AT n0S, and inductively,

Ai = S−1T−niAi−1T
niS

for i = 1, 2, . . . . The attracting fixed point of the matrix

Ak = (S−1T−nkS−1 . . . T−n1S−1T−n0)A(ST−nkS . . . T−n1ST−n0)−1,

w, has a purely periodic minus continued fraction expansion

w = (nk+1, . . . , nk+m),

and according to Theorem 1.3, we have w > 1, 0 < u < 1, i.e., Ak is reduced.
Applying the same procedure to Ak, we obtain m reduced matrices in a
sequence corresponding to the period of w.

Conversely, if two reduced matrices are conjugate, their attracting fixed
points have pure periodic minus continued fraction expansions whose peri-
ods, by Proposition 4.31, differ by a cyclic permutation. Hence they belong
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to the same cycle and are obtained from one another by a finite number of
standard conjugations. �

Remark. Theorem 4.34 asserts the finiteness of the number of conju-
gacy classes of matrices in SL(2,Z) with given trace t, which corresponds
to the class number of the real quadratic field Q(

√
t2 − 4) (in the narrow

sense), is a standard and very important fact in number theory. This fact,
however, is much more general, it is valid for all Fuchsian groups of the first
kind. For the co–compact Fuchsian groups it follows from the expansiveness
of the geodesic flow and can be found e.g. in [4], pp. 212, 549, 569–70.

Exercises

38. Prove that if a, d ∈ Z and |a = d| > 2, D = (a + d)2 − 4 is not a
perfect square.

39. Let A =
(

a b
c d

)
be reduced, and k = a − d − 2c. Prove that

|k| <
√

D.
40.∗ Prove that the length of a closed geodesic with the arithmetic code

(n1, . . . , nm) is equal to

2 log
m∏
i=1

wi,

where w1, . . . , wm are the attracting fixed points of all reduced matrices
corresponding to this closed geodesic.

41.∗ Let L be a geodesic on H connecting the roots of the quadratic
equation

Az2 + Bz + C = 0
with D = B2−4AC > 0, not a perfect square. Prove that there exists a hy-
perbolic matrix U ∈ SL(2,Z) with the same axis. (Hint: This problem is for
those who know some algebraic number theory. The set of integral matrices
having this axis is the real quadratic field Q(

√
D), where U corresponds to

a nontrivial unit of norm 1.)
42. Prove that two hyperbolic matrices with the same trace are conju-

gate in SL(2,Z) if and only if the corresponding quadratic forms (with the
same discriminant) are equivalent in the narrow sense.
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