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Abstract Let G be a semisimple Lie group with no compact factdfsa maximal compact
subgroup ofG, andr a lattice inG. We study automorphic forms férif G is of real rank

one with some additional assumptions, using a dynamical approach based on properties of
the homogeneous flow dm\ G and a Livshitz type theorem we prove for such a flow. In the
Hermitian cases = SU (n, 1) we construct relative Poincaiseries associated to closed
geodesics ofr\G /K for one-dimensional representationskof and prove that they span

the corresponding spaces of holomorphic cusp forms.

0. Introduction

Let G be a real connected semisimple Lie group with no compact fackbrs maximal
compact subgroup of;, andI" a discrete subgroup off. A general definition of
automorphic forms fof" (cf. [11] and [3]) depends on a finite-dimensional representation
of K. Itincludes classical holomorphic automorphic forms on Fuchsian groups, Maass
wave forms, and automorphic forms on bounded symmetric domains (these terms are
defined in 81.1). A convenient construction of automorphic forms by means of relative
Poinca€g series introduced ir2D] and [21] allows us to ‘extend’ an automorphic form for

a subgrouf’y C T to the whole discrete group. ForT'g = {e¢} we obtain Poincarseries,
which can be constructed for any smooth absolutely integrable functich[an§5]. For
cocompact” and in some other cases which are discussed in §1.2, (relative) Rosecaas
provide cusp forms. It may happen that a Poiecsefies is identically zero. However, it
has been shown (se27, Ch. 3;2, Ch. 5]) that for holomorphic automorphic forms on a
symmetric bounded domain there exist non-zero Pomsaries for suitable weights. It is
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not easy, however, to construct relative Poiecsgfies for non-trivial’g, and even less so
to prove that a certain collection spans the corresponding space of cusp forms.

In the case whef is of real rank one and with finite center, afids a lattice inG, i.e.
'\ G has finite Haar measure, we propose a program of constructing spanning sets for cusp
forms based on dynamical properties of the homogeneous floi\Ghand a Livshitz-
type theorem that we prove for such a flow (Theorem 8). We carry out this program in the
case when, in additiork’ has non-trivial one-dimensional representations. In this case the
symmetric spac& /K is Hermitian of real rank one, and by the classification of symmetric
spaces, it is a complex hyperbolic space

t=SU(n,1/SWU0n) x U1))

for somen > 1. LetI" be a lattice inSU (n, 1), andx > 1 be a half-integer such that

(n + D« is an integer. For each loxodromic elemegt € ' we construct a relative
Poincag series®,, . which is aC-valued holomorphic cusp form ifiz(,+1)(I") (for

exact definitions see 881.1, 1.2, and 6.3). The main result of this paper is the following
theorem.

THEOREM 1. The relative Poince& serieg®,, «, yo € I' loxodromig spanSz(, 41y« (I').

This is an extension of a result by Katokd for the classical case of Fuchsian groups
(n = 1). The method is based on duality between the introduced relative Psincar’
series and closed geodesicsIonG/K (Theorems 11 and 14), dynamical properties of
the frame flow on"'\G which imply a Livshitz theorem-type result (Theorem 8), and
the existence of a three-dimensional Lie subalgebra associated to the frame flow which
enables the harmonic analysis BRG that completes the proof. The proof utilizes two
essential features of the complex hyperbolic space: real rank one and the presence of
the complex structure. A natural question of finding finite spanning sets for cusp forms
has been addressed ih5 for the classicaln = 1 case. The main ingredient there
was an approximate version of the Livshitz theoretfy [for geodesic flows, based on
more subtle dynamical considerations. The same scheme will probably work for complex
hyperbolic spaces of all dimensions and will be pursued elsewhere. The paper is organized
as follows. In 81 we review the general definition of automorphic forms and the relative
Poincag series, and discuss their convergence and further implications under additional
assumptions. 8§82 describes the homogeneous floi\@h and its relation to the geodesic
flow on the unit tangent bundI&T\G/K). In 83 we prove a special Livshitz theorem
for the homogeneous flow dn\G and describe a program of constructing spanning sets
for cusp forms in the real rank one case. In 8§4—8 we restrict ourselves to the case of the
complex hyperbolic space, construct relative Poiasaries associated to closed geodesics
in'\G/K, and prove Theorem 1.

1. Automorphic forms on symmetric spaces of semisimple Lie groups

1.1. Definitions. Let G be a real connected semisimple Lie group with no compact
factors b, 1.13.12],g its Lie algebra, and& a maximal compact subgroup 6f. We
shall denote the homogeneous spaceXby= G/K. The groupG acts on itself by left



Spanning sets 1073

multiplications, and this action projects to the actionXonLet 0 be the fixed point ok
in X, then the natural projection

7:G—> X

is given by
g g(0). 1)

The Cartan decomposition correspondingktas
g=tayp, 2

wheret is the Lie algebra ok, ad K)p C p, andp is the orthogonal complement to
with respect to the Killing form oy. The differential(dr). at the identity ofG identifies
p with To(X). The kernel ofdr), is € [10, p. 208].

To eachy e gis associated a left-invariant differential operator also denoteid, by

d
Yf(g) = Ef(g - exptY)l;=o; 3

this linear map frony into the algebraD(G) of left-invariant differential operators o
extends to an isomorphism &f(g), the universal enveloping algebra of the Lie algebra
g (with complex coefficients) ont®(G). In particular, one may consider differential
operatorsY for ¥ € g¢, the complexification of. On G° the centerZ(g) of U(g)
corresponds to the left and right invariant operators and is isomorphic to a polynomial ring
in ¢ letters wheré is the real rank 0o&. The general definition giutomorphic formén the
sense of Harish-Chandral] and Borel B] assumes only thdt is a discrete subgroup of
G. In this paper we studgusp formswhich are automorphic forms with some additional
hypotheses imposed, in the case wieis not cocompact, concerning the behavior close
to certain boundary points. Naturally,lifis cocompact, every automorphic form is a cusp
form.

Let I' be a lattice inG, and V be a finite-dimensional complex vector space. In
what follows GL(V) will act on V on the right, and lep : K — GL(V) be a fixed
(anti-)representation ok in GL(V). Let (-,-) be a Hermitianp(K)-invariant inner
product onV and| - | the corresponding norm. We define the ndrm|, (1 < p < oo) on
measurablé’-valued,I'-invariant on the left functions oG as usual by

1/p
”F”p:(/ IF(g)I”dg> < 00,
G

wheredg is the Haar measure on the grogp and the norm|F|» as the essential
supremum off F| on G, and letL?(I'\G) ® V (1 < p < o0) be the space of such
for which || F||, < oo.

Definition 2. A vector-valued functiorF : G — V is calledZ(g)-finite if Z(g) - F is
annihilated by an ideal of Z(g) of finite codimension.

Remark.If I has codimension one, this means thas an eigenfunction of every operator
in Z(g).
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Definition 3. A smooth vector-valued functiof : G — V is called acusp form forl" if:

(3.1) F isT'-invariant on the left an& -equivariant on the right, i.ex (y gk) = F(g)p (k)
foranyy e TI', g € G, andk € K;

(3.2) F is Z(g)-finite;

(33) FeL>®*T\G)®V.

Remarks.l. Conditions (3.1) and (3.2) imply thd is a real-analytic function off\G
[3], hence a functiorF which satisfies (3.1) and (3.2) satisfies (3.3) if and onlyif is
bounded o™\ G.

2. If " is cocompact, the condition (3.3) is automatic.

3. If pis trivial, F is K-invariant on the right and is often referred to as a cusp form
of weightzero. In the case wheln = SL(2, R) such cusp forms are callédaass wave
forms They are eigenfunctions of the non-Euclidean Laplacian.

Automorphic forms may be defined using antomorphy factari.e. a smooth map
u: G x X - GL(V) that satisfies the 1-cocycle property, i.e.

n(g1g2, x) = (g1, g2(x)) (g2, x) 4)

forall g1, g2 € G andx € X.
If a smooth functionf : X — V satisfies theutomorphy equation

(SI)x) == flyDuly, x) = fx), ()
foranyy € I andx € X, thenits ‘lift to G, f : G — V defined by
F(@) = Fe@)n(g,0), (6)

satisfies (3.1) wittp (k) = u(k, 0).

Definition 4. Let 1 be an automorphy factor. A smooth functign: X — V is called a
cusp form of type if its lift to the groupG defined by (6) is a cusp form of the Definition 3
with p(k) = u(k, 0).

We denote the space of cusp forms of typéas well as the space of their lifts &) by
S ().
The spacd.?(T'\G) ® V is a Hilbert space with the inner product

(F1, F2) = / (F1(g), F2(g)) dg (7)
G

corresponding to the nortf- ||z introduced above (inside the integral is the inner product
on V). Using the Cartan decomposition of the graigorresponding to (2),

g = gxks (8)

wherek € K andg, depends only om = g(0) € X, and the cocycle property of (4), we
obtain, for the lifts of automorphic formé (g) = f1(x)u(g, 0) and fo(g) = f2(x)u(g, 0)
with x = g(0), an analogue of the Petersson inner product

(f1 f2) i= (f1, o) = f (A (ge, 0), f2(x)u(gx, 0)) AV, 9)
'\G/K
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wheredV is aG-invariant volume form on the symmetric spaxe
Sincerl is a lattice, we have

L*T\G)®V C LAT\G)® V C LYT\G)® V.

Therefore, the integral (9) converges for cusp forms; in fact, it converges if gfttaar f>
is a cusp form. Thus, (") C L1(I'\G) ® V. Notice that in general a function satisfying
(3.1) and (3.2) and belonging t'(I'\G) ® V is not necessarily a cusp form (e.qg. for
G = SL(2,R), " = SL(2,7Z) and Maass wave forms, a residual Eisenstein series has
behavior likey?, fora < % in the cusp; it satisfies (3.1) and (3.2), isiA(I'\G) but is
not bounded), although for holomorphic forms on a symmetric bounded domain it is (see
Remark 1 below).

Let X be a symmetric bounded domain.flfis a holomorphic function ofx, condition
(3.2) is satisfied J]. Let H},(I'\G) be the subspace df”(I'\G) ® V consisting of
holomorphic functions o which satisfy (5). Thers, (') = H?(I'\G).

Remarks.1. For holomorphic automorphic forms on a symmetric bounded doxiait
spaced{},(I'\G) (1 < p < oo) coincide for suitablg: by Satake’s theoren2f; 2, Ch. 11,
§5].

2. Although, in general, dirfi, = oo, for holomorphic automorphic forms on a
symmetric bounded domaixi, dimS, < oo [22, Ch. 4;12; 2, Ch. 11, 85].

3. The classical case of holomorphic automorphic forms on Fuchsian groups
corresponds ter = SL(2,R) ~ SU(1, 1).

1.2. The relative Poince series. Let I'o be a subgroup of". The following
construction allows us to ‘extend’ an automorphic form Fgrto an automorphic form
forT.

THEOREMDS. LetI'g be a subgroup of”, f: X — V a function satisfying the automorphy
equation (5) fop, and f its lift to the groupG by the formula (6) such that:

(1) fis Z(g)-finite;

(2 felL'To\G)RV.

Then the serie®r, =}, .r\r flv, called therelative Poincag’series foil "o, converges
absolutely and uniformly on compact sets, and represents a function satisfying (3.1) and
(3.2), and belonging t&. X (I"\G) ® V.

The proof follows the lines of the argument of Harish-Chandra for the Paraziés
(see R, J). Itis proved that the series converges absolutely and uniformly on compact sets
and satisfies (3.1) and (3.2). For cocompiadhis proves thabr, is a cusp form. I
is a lattice, it follows tha®r, € LY(I"\G) ® V which, without additional assumptions,
does not imply tha®r, is a cusp form. However, for holomorphic automorphic forms on
a symmetric bounded domain, according to Satake’s theorem, the relative R@poas
Or, are cusp forms.

If X = G/K is a symmetric bounded domain, then any absolutely integrable function
on X, for example any polynomial oK, produces a holomorphic cusp form for the trivial
I'o = {e}[2, Ch. 11, 81].
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If T'g is a parabolic subgroup df, the above construction gives so-called Poirear”
Eisenstein series.

For general’y, it is not easy to find a functiosf which satisfies conditions (1) and (2)
of Theorem 5. We shall give a construction for cyclic loxodromic subgroups of isometries
of complex hyperbolic spaces in 86.3.

2. The homogeneous flow

2.1. Definitions. From now on we suppose, in addition to the standing assumptions of
§1.1, thatG is of real rank one and has finite center (and therefore non-compact simple).
Then any non-zer® e p defines a maximal Abelian subspaceptt = RD, consisting

of real semisimple elements (ciL(, pp. 401, 431]). We fix a non-zef < p and let

A ={expt® =a; |t € R}

be the corresponding maximal split Abelian subgrou@ oActing by right multiplications
on G, it defines a standard flodg on G,

a;(g) = gay. (10)

An orbitof g € G, {ga; | t € R}, projects by (1) to a geodesfga; (0) = gatgfl(xg) |
t € R} on X passing through, = ¢g(0) [10, p. 208]. The subgroug itself projects onx
to the ‘standard geodesic’
J={a/(0) |t € R}

passing through 0. There is a subgrop C K which, acting onX on the left by
isometries, fixe§ pointwise. TheMW = WA = Z(A), the centralizer ofA.

Definition 6. An elementg € G is calledhyperbolic(or regular) if it is conjugate to an
elementinA.

Definition 7. An elementg € G is calledloxodromicif it is conjugate to an element in
Z(A).

Any loxodromic (and, therefore, hyperbolic) elementrfixes a geodesic iX, called
its axis and has two fixed points in the boundary. It is easy to see that geodesics¥n
are exactly the axes of loxodromic elements;in

Geodesics naturally lift t@;/ W which can be identified with the unit tangent bundle
S(G/K). Recall that as subgroups 6f acting on the spac& = G/K on the left by
isometries K fixes the point Oc X, andW C K fixesJ pointwise, and hence the unit
tangent vector tg at 0 is denoted by. Thus we have two natural mappings:

T:G—> G/K

given by (1) and

c:G—>G/W
given by

o(g) = g,
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whereg, is the differential ofg. Defining the mapping
T:G/W—> G/K

such thatr o 0 = 7, we see thatG/ W is a sphere bundle ove&F/K with the fiber at
each point identified witlk / W, the unit tangent space at this point. For any geodésic
in X passing through a poing there exists @ € G mappingJ into C in such a way that
£(0) = xo. This follows from the fact that the group acts transitively on the unit tangent
bundleS(X) = G/W. The transformatiog is not unique but is determined up to the right
multiplication by the subgrou@’ which fixes every point ofi. Thus we obtain a family
of lifts of C, {gwa; | w € W, t € R} to the groupG parametrized by the grouly, which
are orbits of the flowk;. Since the subgroup$ andW commute, the flowk; projects to
thegeodesic flovon the factotG/ W, denoted byy,:

a1 (0(8) = o (a:(8)).

We see that all liftgwa; | w € W,t € R} project to the orbity, (¢ W) of the geodesic
flowonG/W.

LetI be a lattice inG andI"\X = M. The action ofA descends to the factdn G and
defines dnhomogeneous flog on '\ G denoted byp,,

¢ (I'g) =Tga;.

The mappingsr, o, andt also descend to the corresponding left factord hyand the
homogeneous flow, projects to thegeodesic flovon S(M) = I'\G/ W, denoted byy;,,
by the formula

¢r(0(8)) = o (@ (g)).
For the base point = ¢g(0) = 7 (g) € X we shall use the same notation:

@i (x) = 7(9:(8)).

Respectively, we have two differential operators:

d
/(@) = I f(@:(8)li=0,

defined on the set of functions &h G differentiable along the orbits @, and

d
Df() = - f(gi@)li=o.

defined on the set of functions @ G/ W differentiable along the orbits @f;.

The following characterization of closed geodesica4n= I'\ X is immediate. Closed
geodesics inM are the axes of loxodromic elementslih They are in one-to-finite
correspondence with conjugacy classes of primitive loxodromic elements in

It is easy to see that closed geodesica/itift to closed orbits of the geodesic floyy
onT'\G/W while their lifts toI"\ G are not necessarily closed.

We shall denote a closed geodesichh corresponding to the axis of a loxodromic
elementyp € T in T\G/K as well as its lift tol'\G/ W by [yo], and a family of lifts to
'\G by {[yolw | w € W}.



1078 T. Foth and S. Katok

2.2. Dynamics of homogeneous and geodesic flovtss a standard fact that there exists

a left G-invariant Riemannian metric oK = G/K relative to whichX is a symmetric
space 18 Ch. 11, Theorem 8.6]. Since the real rank®fs equal to one, this metric is

of negative sectional curvature, which is the main reason for the following properties of
the homogeneous flog, and the geodesic flow, which we review below. A standard
procedure]8, Ch. 11, 8§6] provide& -invariant Riemannian metrics @i andG/ W (this

can be done for any compact subgrougoih place of W) in such a way that the distance
(which we will denote in both spaces k) does not increase after projection: for any
81,82¢€G,

d(o(g1),0(g2)) < d(g1, &2)- (11)

The Riemannian volume ao@ coincides with the Haar measure.

We have seen that the homogeneous ffgvon I'\G, considered as a fibered bundle
overI’'\G/ W, projects to the geodesic flayy on the bas&\G/W. In addition, ifg; and
g2 belong to the same fiber, i.e2 = g1w for somew € W, we have

d(@r(g1), ¢1(g2)) = d(g1, g2)

by left-invariance of the metric and sinaeanda, commute.
The geodesic flow; onT"\G /W is Anosov (hyperbolid)17, Theorem 17.6.2] with the
correspondind¢;-invariant splitting of the tangent bundle B G/ W:

T('\G/W)=E°® E* ® E",

and foliationsW? (the orbit foliation),W*, andW*, respectively.

It follows that the homogeneous flogy is an isometric extension @f;, and, as such,
is partially hyperbolig i.e. there is aC* Dg,-invariant splitting of the tangent bundle of
MG:

T('\G) = E%® E* & E*

with the following properties. The integral manifolds of the distributibf form the
neutral foliation denoted byW?; its leaf through a poing being gW x O(g), where
O(g) is the orbit of the flow. The flow restricted to the leavesWof is isometric. The
integral manifolds of the distribution* (E*) form thestable (unstablefoliation denoted
by W (W*).

Let us denote the distance along the leaves of the foliatiohand W* by 4* andd*,
respectively. Then there exi€t . > 0 such that for any1, g2 lying on the same leaf of
Wj (] =u, S),

d/(§1(81). #1(82)) < Ce™d (g1, g2) (12)

forj=s,t>0andforj =u,t <O0.

The foliations W°, W*, and W* are transversal and project to the corresponding
foliations W9, W*, andW* of ¢, with the same estimates (12). The homogeneous flow
@: preserves the Haar measure BYG while ¢, preserves the Riemannian volume on
\G/W.
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3. Dynamical approach to construction of cusp forms in the real rank one case

3.1. Cohomological equation for the homogeneous flowhe hyperbolic properties of

the geodesic flow oif\G /W imply the Anosov closing lemma and its strengthening (see
[17, Theorem 6.4.15 and Proposition 6.4.16]). As a consequence, the Livshitz theorem
holds. Since the spac® M) may not be compact, it is natural to formulate it for the class
BL of bounded Lipschitz functions.

THE LIVSHITZ THEOREM. Let f € BL(S(M)) be such that it has zero integrals over all
closed orbits of the geodesic flow 610M). Then there exists a Lipschitz functiéhon
S(M) which is differentiable in the direction of the flaw, and such that

DF = f.

This theorem has been proved €] for Anosov flows on compact manifolds. It has
been proved lated] that if the functionf is C*°(S(M)), the solution is als@*°(S(M)).
The original proof works with minor alterations for manifolds with cusps (the proof for
Fuchsian groups with cusps is given ] Appendix]).

By the Moore’s ergodicity theoren2f, Theorem 2.2.6] the homogeneous flomloyG
is ergodic and hence topologically transitive, but it is not Anosov, the closing lemma does
not hold, and hence a straightforward generalization of the Livshitz theorem does not hold
either. However, the same conclusion holds under a stronger hypothesis, and the proof is
similar to the proof of the Livshitz theorem for the geodesic flow.

THEOREMB8. (Special Livshitz theoremdet f € BL(I"'\G) be such that for every closed
geodesigyp] in S(M) and everyw € W the integral in"\G

f(@s(g))ds = 0.
[volw

Then there exists a Lipschitz functidh on T'\G which is constant ori¥-cosets and
differentiable in the direction of the flogy, such that

DF = f. (13)

Remark.We shall give a proof for real-valued functions. Then the theorem will obviously
hold for functions valued in ang™.

Proof. The homogeneous flow dm\G is topologically transitive, i.e. there existga G
whose orbi@(g) ={@;(g) | t € R}is dense il \G. We define a functio on this orbit
by the formula

t
F(g:i(8) =/0 f(@s(8)) ds.

We need to prove thdt satisfies a Lipschitz condition c(fi(g) and hence can be extended
to '\G as a Lipschitz function. Givea > 0, let#; < ¢, be such that

d(91,(8), Pr,(8)) < €. (14)
We will show that b
/ f(@s(g)ds = O(e). (15)
5%
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As is customary,= O(x)’ means that the expression is ‘Cx’ for some constan€. We
will use this notation to avoid an accumulation of constants.

Since the homogeneous flow is not Anosov, we cannot hope to be able to approximate
anye-close piece of the dense orbit by a closed one as for the geodesic flow. Nevertheless,
the close relation with the geodesic flow allows us to prove the following.

LEmMMA 9. (Approximation lemmalJsing the notation above, for a piece of a dense orbit
of ¢; (14), there is a lift of a closed orbit af, to I'\G, {¢;(p) | 0 < ¢t < T} with
|T — (t2 —11)] = O(e),suchthatfol <t <1 —1

d(@ry+1(8), G (P)) = O(ee™MMinG12=1=0)y, (16)

Proof. By (11) the projection of)(g) ontoI'\G /W is a dense orbi®)(v) of the geodesic
flow ¢, with v = o (g), and it follows that

d(@, (v), @1, (V) < €.

corresponding pieces of orbits. Let us dengtg = v1, ¢,g = g1, ¥L,v = v2 and
¢,8 = g2. Since the geodesic flow, is Anosov, by the Anosov closing lemma there
exists ap € I'\G/W such that/(p, v1) = O(¢) and its orbitO(p) = {¢;(p) | t € R} is
closed, i.epr(p) = p with the periodl’ satisfying|T — (t2 — t1)| = O(¢). The pointp
can be chosen such that the leaf of the unstable foliation containjrig’ (v1), and the
leaf of the stable foliation containing, W*(p), intersect, and since they are transversal,
they intersect at a poir*(p) N W*(v1) = ¢, andd“(v1, q) = O(e).

Lift W*(v1) to W(g1). Sinceq € W(vy) its lift W¥(g1) intersectsgW, so let
W (g1) N gW = ¢, and similarly, W*(3) intersectspW, W*(j) N pW = p, and
or(p) € pW (see Figure 1 which represents the picture in the direction transversal to
the orbits).

Since the distance between(p) and¢;(q) decreases exponentially for> 0, and
d*(p,q) = O(¢), we have

Let OW)|2 = {:(v) | 1 <t < 2} and ()2 = {@1(g) | 1 < t < 12} be the

d*(@(p). 91(q)) = O(ee™),
and since all leaves are transversal we have the same estimatg( &y
d* (@i (D), $:(q)) = O(ee™).

Similarly, since the distance betweep_;, —; (v1) andg,,—;, —;(¢) decreases exponentially
fort > 0, andd" (¢1,—1, (V1), ¥r,—1,(q)) = O(€), we have

d"(p;(v1), @1 (q)) = O (ee 2717,
and the same estimate &' (§):

d"(@:(81), $:(§)) = O(ee™ 27170y,
Therefore, for 0< ¢ <, — t1 we have simultaneous estimates

d(@1y11(v), 91 () = O (ee MMiNE-2=1=0))
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d(@ry+1(8), §1(P)) = O (e HMNE12=11=0)y, O

It follows from (16) that

= 0(e),

1 T
/f((ﬁs(g))ds—/o f(gs(p))ds
L4

and since by the hypothesis
T
/0 f(gs(p))ds =0,

we obtain the required estimate (15). This proves the claim. Thusn be extended
from the dense orbit to a Lipschitz functionih G. SinceD F = f on the dense orbit, it
follows thatF is differentiable in the direction of the homogeneous flow @fd = f in
MG.

A similar argument shows that the functidhis constant oriW-cosets. Let (g1) =
o (g2) = v. There exisg; andg, on the dense orbit @f; ¢-close tog; andgz, respectively.
Then the projection t&'\G/ W is ane-close orbit ofp,. Find a closed orbit op; e-close
to the projection, and lift it back t&"\G in the same manner as we described before. It
follows from the exponential estimates that

|F(g5) — F(g)l = O(e),

and asx — 0, we obtainF (g1) = F(g2). ]



1082 T. Foth and S. Katok

3.2. Spanning of cusp forms via relative Poinéageries in the real rank one caseOur
program of constructing spanning sets $gI") consists of three steps.

(1) Construction of relative Poincér series associated to closed geodesica#/in=
'\G/K. Fix a finite-dimensional complex vector spa€eand an automorphy factor
u: G x X — GL(V). For each loxodromic elememg € I find a functiong,, : X — V
which satisfies conditions of Theorem 5 for the subgréyp= (yp). Having such a
function, we can apply Theorem 5 to obtain a relative Pomsariesd,,, and prove that
they are cusp forms.

(2) The period formulaLet f € S, (T), yo € T loxodromic, andf be the lift of f to
G. Then for any lift[yo]w, w € W of closed geodesigyp] to G,

(fv ®V0) =C fdt
[volw
with an explicit constan€ depending only offiyoly, .

(3) Cohomological equation for cusp formis order to prove that the relative Poinear”
series{®,,, 0 € I' loxodromig spanS,(I'), we assume that there is a cusp form
f € 8,(') such that(f, ®,,,) = 0 for all relative Poincas seriesd,,. In order to apply
the special Livshitz theorem (Theorem 8) we first need to show fhatB£(I"\G) and
then use (2). Thus we obtain a solutisrof the cohomological equaticd F = f, which
is Lipschitz and differentiable in the direction of the flgi, hencef is acoboundary
Proving that cusp forms cannot be coboundaries will imply the result.

We are able to carry out this program in the case wlkerhas non-trivial one-
dimensional representations. In this case the symmetric space is Hermitian of real rank
one, and by the classification of symmetric spad€sp. 518], it is a complex hyperbolic
space

]HI% =SU,1)/S(U@n) x U(L))

for somen > 1. The rest of the paper is devoted to this case.

4. The complex hyperbolic space
4.1. The unit ball model. The groupG = SU(n, 1) is the group of(n + 1) x (n + 1)
complex unimodular matrices preserving the Hermitian form

(z,w) =zqw1+ -+ Zuwy, — Zn+la)iz+1
onC”™1. In other words,
G={AeSLh+1,C)|(A-z,A-w) = (z, w) Yz, w € C"1}
={AeSLn+1C)| AT .S-A =28},
where 1, denotes the: x n identity matrix, S = (10 f’l

multiplication.
The maximal compact subgroup 6f

), and - is used for matrix

K =S(Umn) x UL) = {(”0" 2)

up € U(n),a = (detu,l)_l}.
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The symmetric spac&/K is called thecomplex hyperbolic spacend is denoted by
H{. It can be identified with the projectivized spacenefativevectors; € ™1, i.e. such
that(z, z) < O:

HE = P({z € C"1 | (z,2) < O},

or, equivalently, with the set afegativdines inC™1, or in homogeneous coordinates, with
the unit ball inC”:
B"={zeC"|z1z1+ -+ zn2n < 1}.

The last identification is obtained by the biholomorphic embedding

" — P(Cmh

z (17)
(1)

of C" onto the affine chart oP(C™1) defined byz,+1 # 0. B" is a bounded domain
in C* and hence a complex manifold. An invariant Riemannian metriddérnof the
form ds? = g;;dz;dZ; obtained by a standard constructidi8[Ch. 9, §6] is of negative
sectional curvature and is called tBergman metric We normalize it according to3[
111.1.3] so that the sectional curvature is pinched betwe&rand—;ll. Using [L0, Ch. 8,
Proposition 2.5], one easily obtains the following relation between the volumef&ron
B" corresponding to the Riemannian metric and the Euclidean volumed®gron C”:
4" dVg
dv = = (18)

Using the above terminology, we call a vectoe C™! positiveif (z,z) > 0 andnull
if (z, z) = 0. We shall always assume that negative and null vectors are represented in the
form (17), and keep the notatidn, w) = zyw1 + - - - + z,w, — 1 for them.

4.2. The tangent bundle.For each point = (z1, ..., z,) € B" we writez; = x; +iy;.
The real tangent space at T,(B") = T, refers to the tangent space of the underlying

2n-dimensional rea”*° manifold and has a basis
0 (2) 0 (2) 0 (2) 0 (2)
ax1 o oy1 AR 0xy © dyn o

The vector fields

ad 1( d | > ad 1< d .0 >
—="—-i—) and —=Z(—+i—
dz; 2\ 0x; dy; 9z; 2\ 0x; dy;

form a basis of the complexificatidfy’ of 7. The real tangent spadg can be identified
with ther-dimensional complex subspaceZif of the vectors in the form

St vk
n= nj Nj=—:
= 0z; 0z

wheren; € C. We shall always refer to the tangent vectors as being in thebom( Zl>
(771' e O).
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4.3. The action ofSU (n,1). The groupG = SU (n, 1) acts onB” by biholomorphic
transformations (automorphisms): for

ail ay, b
o= A (19)
apl ann by
c1 .. Cn d
a11z1 + -+ - +awzn + b1 ap1z1 + -+ -+ appn + by
g@) = e, (20)
ClZl+"'+CnZn+d ClZl+"'+CnZn+d

(sometimes we will also usgz for this action), which are isometries 8" with respect
to the Bergman metric. This action corresponds to the left multiplicatiozonThe
differential ofg : B* — B" atz,

P P Tg(z)a

is given by the Jacobian matrix which can be written as

J(g ) =(c-z+d) 2 Ac-z+d) — (A-z+b)-0), (21)
where
ail - au b1 21
A= , b=|{---], ¢c=(1 -+ ¢2), z=
apl -°°  Qpn by Zn

A direct calculation shows that
det/(g,2) = (c-z+d)" "™ = (crz1 + -+ + cuzn + ) 7", (22)
The group of biholomorphic automorphisms®f is actually
PU(n,1) =G/Z,

where
Z = {1l1+11 €1n+17 D) €n1n+l}

is the center of5 (¢ is the primitive(n + 1)th root of 1).

4.4. The Cartan decomposition.The Lie algebra of the grou@ is g = su(n, 1). The
Cartan decomposition (2) is

g=tDdp.

tis the Lie algebra oK consisting of(n + 1) x (n + 1) complex matrices of the form

u o0
0 ir)’

whereU is ann x n skew Hermitian matrix} € R, and trtU + iA = 0, andp consists of
matrices
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0, n
(% 0). (23)
wheren = w e C".

The differential at the identitydr ), of the natural mapping
7:G— B", mw:gw— g(0), (24)

maps(?% g) € p to the tangent vector = (zl) € T, (0 thus identifyingp = To(G/K)

with Ty 0 (B").
Using the Cartan decomposition of the grau8), we can write any element

a1 -+ ay bh

g = eG
apl -+ Gun by
C‘l “ e C’l d

0 e ¥
and deir, = ¢'¥; the matrixg, is hyperbolic where the entries depend onlyzoa g(0),
and it represents the projection on the symmetric sjgad€, and by B, 111.2.7],
g=_ (25)
Va2

as a product = g, - k. The matrixk € K is in the formk = (“" 0 ) whereu, € U(n)

4.5. The complex structure.Recall [L8, Ch. 9] that the canonical complex structure on
B" is a tensor field/ : z — J;, where for eacly € B", J, is an automorphism of the
tangent spacg, such tha’t]z2 = —I (I denotes the identity map @f). In local coordinates

it is given by

()2 ()
: <ax,- (Z)) ;) @ <3yj (Z)) BETY ®

RestrictingJ to Tp(B™) = p we obtain an automorphist : p — p such thatlgx =-X
for all X € p. SinceG is semisimple, there exists an eleméfit € Z(¢) such that
Jo=ad,(Zo) andt = {X € g | [Zo, X] = 0} [18, Ch. 11, Theorem 9.6]. We have

1 0
Zo= (Hé " _n_i)’
n+1

0. n _ 0, in 0. n
JO((zﬁ )>_<—i’ﬁ 0) for all (fﬁ O)ep.

For each; € B" the automorphisnd, can be extended uniquely to a complex linear
mapping of the complexificatiofi’ of T, onto itself, also denoted hy;, and satisfying
(J.)2 = —1. The eigenvalues of. are thereforé and—i. Forz = O we havelj (B") = p©
and the corresponding eigenspaces are

and

vt ={Zep’|J(Z)=iZ} and p ={Zep‘|J(Z)=—iZ).
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Then
pT={X—iJX) | Xep), p =(X+iJ(X)| X ep), (26)

andp® can be written as a direct sum of complex vector spaces

p=ptep.

0 1
+ _ n n
{5 o) e
_ _[{0, © .
v ={(% o) e

Any g € G can also be decomposed according to Harish-Chadm £88,10, Ch. VIII,
87] as

Thus by (26) and (23)

and

8§=8+ 80" 8->
wheregt = expp™t, pt e pT, g~ = expp~, p~ € p~, andgg € K¢, the complex-
ification of K. For
aix -+ a b1
§= apl -+ Gun by
c1 e Cp d
we obtain
1, z _ 1, O
+ n n — n 27
e=(5 ) e =(m 9 @)
where

by cL
d d
z=1--- and w=1{---].
by Cn
d d
Sincez = g(0) we see that the Harish-Chandra map
x:G—pt,
given by
g — log gt
is exactly the magr of (24) and the bounded domaii{G) C p™ is the unit ballB* c C".

Remark.Notice thatin (27w # Z.

The Bergman metric oB” introduced in 8§4.1 is Hermitian, i.e. it is invariant by the

complex structure/, and thus defines a Hermitian inner product on each tangent space
T.(B").
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5. The frame flow
5.1. Geometric interpretation. LetI" be a lattice inG and

Oz O O
9= 0 0 1]ep.
0 10

The corresponding maximal split Abelian subgrouggof

1,1 0 0
A=1a = 0 cosh sinhr teR (28)
0 sinhr  coshe

projects to the ‘standard geodesic’

0

J=1a;,00) = 0 trelR
tanhr
1

The subgroup ok which commutes with is

Up_1 0 0
W= 0 ¢ 0 v € R/277Z, detu,_1 = 2V
0 0 e

As has been explained in 82.1, acting by right multiplications@n A defines
a homogeneous flow; on I'\G, which is called theframe flowin this case. The
terminology comes from the fact that the graRp' (n, 1) may be identified with a principal
U (n)-bundle overB". A fiber at the pointz € B" geometrically represents the space
of n-frames: unitary frames of tangent vectorszawith respect to the Hermitian inner
product. Geometrically, the flog, acts as follows: along the geodesic it leaves invariant,
it acts by hyperbolicisometries whose differentials move the last vector along the geodesic
at constant speed (this represents the projectign tf the geodesic flow, onT'\G/ W),
and the remaining vectors of the frame by parallel translati@ Ch. 9, Theorem 3.2].
Notice that the distance with respect to the Bergman metric between two points differs
from the parameter of the geodesic flow on the corresponding geodesic by a factor of
two: d(z, ¢:(z)) = 2t.

5.2. Loxodromic elements i§U (n,1). As has been explained in the general setup in
§2.1, a loxodromic elemenp has axis inB", and two fixed points in the boundasy”,
oneattractingand onerepelling The fixed points correspond to the null eigenvectors of
yo With eigenvalues. andx~1, and the remaining — 1 eigenvectors are positive with
eigenvalues of absolute value 1.

As we have pointed out earlier, the automorphismsB6fare in fact elements of
PU(n, ). Therefore, each loxodromic automorphism may also be represented by an
element ofU (n, 1) with a real eigenvalue not equal to 1. Sometimes it is possible to
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find such an element iU (n, 1). Eigenvectors (irT”"*1) and hence fixed points (on the
boundarys B") do not depend on the choice of a representativé (m, 1). The following
proposition gives an explicit formula for the transformatiBrconjugating a loxodromic
element inU (n, 1) to an ‘almost hyperbolic’ element with a nice fundamental domain.
This formula will be used in §7.

PROPOSITION1O. Let yo be a loxodromic element ir/(n,1) with eigenvectors
Vi,...,V,_1, X, Y and corresponding eigenvalues, ..., t,_1, A, A1, ltjl =1, =
1L...,n=1LxeR Al >1 LetV;,j=1,...,n—1, be normalized so thd¥;, V;) = 1
and V7 be chosen so that the matrix

X Y X Y
T:= (Vl o Vi xn Ttz ®o 7)
has real positive determinant. Ld&f be the Dirichlet fundamental domain fdyo)
centered af'(0). Then
(1) TeSU@n,1,

()
T1 0 0
-1 N -1 O 0
J/ = T . J/O . T — n
A2+l 21
0 0 2 2
A2=1  A%41
o .- 0 2k 2k
has null eigenvectors
0 0
Xo=1]0 and Yo=1 0 [,
1 -1
1 1

(3) the fundamental domaifi~1(Fp) of (y) is bounded by two hypersurfaces:

el 55
sz{w :1}.

6. Automorphic forms on the complex hyperbolic space
6.1. Automorphy factor. For anyg € G, along with the Jacobian matrik(g, z) and its
determinant, the function

)\2—1w A2+1
2 2\

and
A2—1 N AM+1
2. T T

j(g,2) = [det (g, )Y = (crza 4+ -+ cnzn +d) 7, (29)

is a 1-cocycle. Taking.(g, z) = j (g, z)*+D* for a half-integex > 1 such thatn+ 1)« is
an integer as aautomorphy factarwe see that fok € K, p(k) = u(k, 0) = ¢! *+tDV g
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a one-dimensional representationkdf The operatorf |y defined in (5) is well-defined on
PU ((n, 1). Thus we obtain a space of holomorphic cusp forms of weight 1)« denoted
classically byS¢,+1) (I') (see, e.g.,43)).

Using the formula (25) we see that

. (n+1)
(g, 0 =d = = (V=2 7)

3

and therefore the inner product is given by the formula

(f1. f2) = / FiTa(—(z, )% gy, (30)
F\H.

6.2. Lifttothe group. Itis convenientto choose the following local (partial) coordinates
(z,n,¢)onSU(n, 1):

2(g) = g(0) € B", n(g) =J(g,0)-1te S (B"), (31)

where is the unit tangent vector at zero to the ‘standard geodgsicitroduced in §2.1,
and
((g) =j(g,0) =d ™" =/(=(z,2)e'V #0. (32)

It is easy to check that the left multiplication iy € G corresponds to the action
on z € B" by a biholomorphic transformatiog’(z) (20), onn € S.(B") by the
Jacobian matri¥/ (g’, z) (21), and ot by j(g’, z) (29). The lift of the automorphic form
f € S+, (D) to G (6) has a nice expression in these coordinates:

f(g) = fl)e D,

6.3. Construction of relative Poincér series associated to closed geodesickhe
following construction associates a cusp form to each loxodromic element

ail -+ aw b

Yo = erl.
anl -+ Gun by
c1 e Cn d

As a loxodromic automorphisnyg has two fixed points on the boundaig”, X andY:
(X, X) =0and(Y, Y) = 0, X repelling and” attracting. TherQ,,(z) = (z, X)(z,Y) #0
on the closure oB" except for the pointX andY, and transforms undeg as follows:

0,0 (702) = j (70, 2)2Qpe(2) = (c121 4 - - - + Cnzn + d) 720 (2).

Let K, = {k > 1| k € %Z, (n + Dk € Z}. For the rest of the paper we shall
assume that e K,. The functiong(z) = 1/Q§,'(’,+1)"(z) is an automorphic form of
typeu(g, z) = j(g, 2)2"*+D¥ for the subgrougy = (yo), and it satisfies condition (1) of
Theorem 5 since it is holomorphic. Condition (2) is also satisfied. To see that we write,

using (18),

(_ (Z, Z))(n+l)(l(71)

—(z. (n+1)k dv =4n/ dVg, 33
/FO\Bn lg(2)(—(z, 2)) o 12 X) (e, ¥)| e E (33)
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where Fy is a Dirichlet fundamental domain fdrg. Since the denominator of the
expression in the second integral is equal to zero onty-atX andz = Y, the expression
represents a continuous function ép. Since Fp is a bounded domain, the integral is
finite. Thus for any € K, we produce a relative Poin@aseries

Oy (2) = Z (q1y)(@) (34)

yelo\Il

of weight 2n + 1)k which belongs td.}(I"\G), and, by Satake’s theorem, is a cusp form.

If y1 is conjugatetgq in ', then itis easy to see th@t,,  (z) = ©,, (). If two primitive
loxodromic elementsyg, y1 € I' have the same axis, them = yow, wherew belongs to

a compact subgroup & conjugate tow. It follows from discreteness df that ifn > 2,
finitely many elements in" may have the same axis. It is a consequence of the period
formula (Corollary 13) that their relative Poinesséries coincide.

7. The period formula
THEOREM11. For any f € Syu+1)¢(I') and any loxodromic elemepg € T,

Y020
(f’ ®VO~,K) = |a|—2(ll+1)ch f(Z)Qyo,K(Z)(n+l)K dt.

<0
Here zp is any point on the axis afy, the integration is over the axis ¢f in B", t is the
parameter of the geodesic flow—= — (X, Y)/2, and
_ @t De—n—D!  ouina—-1
(((n+ D — N2

is a constant.
Proof. Let
I := (f, Opgi).

Since the series (34) converges absolutely, we can interchange summation and integration
and, using the standard ‘Rankin—Selberg method’ (86ed. 246]), obtain

I= @) () (— , 2(n+Dk av
/F=F\B” f@ Z (‘Z|V)(Z)( (z,2)

yelo\I"

= Y | F@ENG(—(z ) Pxav
yelo\l / F

o | f@a@(=(z 2R ay
yelo\r Vv F

(—{(z, Z))2(114»1)/(
(X, 2)(Y, z))ntDx

bl

= f@
Fo

whereFyp is the fundamental domain fagp) of Proposition 10.

We now make the change of variables= 7'z, whereT is as in Proposition 10,
mapping the ‘standard geodesiz’into the axis ofyp. The following lemma is easily
checked.
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LEMMA 12. (z, X)(z, Y) = aj (T, w)?(1 — w?), wherea = —(X, Y)/2.
According to (18) we have

dzaNdZi N - ANdzy NdZp
(—(z,z))n+D

dv = (2i)"

Letus denotdV; = dw; Adw; A -+ Adw, Adw,. Then

= | o D duandin o nd nd,
Rl (X, Z)(Y, 7))t Dx (—(z, z))+D
(—(Tw, Tw)2 e Gui Adwi A -+ A dw, A didy,
(X, Tw)(Y, Tw))n+Dr - (—(w, w)"+D
(—(w, w))2HDe i (T, w)| A De dvi

— (20D / F(Tw) .
T-1F a- wrzl)(nJrl)KmZ(nJrl)K (—(w, w)) @+

= (2)" / f(Tw)
T-1F

(_(w7 w))Z(n+l)K7(n+l)j(T, w)Z(n+l)K

= (2i)'q~ T Dx / F(Tw) dvy.

T-1F, (1 —w)n+De

Further calculations can be divided onto three parts:

Step 1.Show that

—_ 2ni (2i)'e~ DK
2+ Dk —m+1)+1

(—(w, w))2n+De=(n+1)+1
X f(Tw) ) _
/7"1F0ﬂ{w|w1=0} a- wr2l)(n+1);(

Step 2.Show that

(T w)> "D v,

— (1) 2n+ Lk —n—-1)!

I =2"% 2 n—1
o 20t De —21 PP
_ 2(n+1)k—2
x / Frwy S g 20 gy,
T-1Fn{w|lwi=--=w,_1=0} (1 - wn)('H_ I

Step 3.Show that

I = |a|20FDxC / P H @ X) (2 YOI .

<0

Step 1y = T~ 1yoT leaves invarianfw | w; = 0}. The fundamental domaifi—1 Fg
for y over which we take the integral can be describefhas= 71 Fon{w | w1 = 0} with
the disc{w | wa = constant. .., w, = constankt of radius(l — wawy — - - - — w, W,) Y2
‘attached’ at every point0, wo, ..., w,) € D1 (this disc has only one common point with
D1). Change coordinates on the di{se¢ | w> = constant. .., w,, = constant

(Rew1, Imwi) — (R, ©),

w1 = (1 — wohz — - -- — wuy) Y2RE®, 0<R<1l 0<0O <27
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Then on the dis¢w | w2 = constant. .., w, = constant,
dwi Adwy, = —2i d(Rewy) Ad(Imw1q)

Jd(Rewq, Im
_ _o; |9(Rews, Imwy) dR AN d©
J(R, ®)
= —2i(1— woy — - - — wpy)RAR A dO,
d
do =4 .
LW1 | R=constant
We have
—(w, w) = (1 — waiz — -+ — way)(1 — R?),
—(w, w)[p, =1 —waw2 — - — Wy Wh,
o)
1
7 — _2i(2i)na7(n+l)/</ R(1— R2)2(n+l)K7(n+l)dR1-f F(w1) dwy,
0 i JrR=constant W1
where
(1 _ w212)2 L wnwn)Z(n+l)K7(n+l)+l

](T, w)2(n+l)K dVZ

F(wy) =/D f(Tw)
1

(1 — w2)(r+Dx
is a holomorphic function ofs.
By the Cauchy integral formula
F
f WD gy = 271 F(0),
R

=constant W1
hence this integral does not depend on the valuR afd, taking into account the fact that

1
/ R(1— RY)Zn+De—rtd) gp 1 ’
0 22n+ Dk —(n+D+1

we get

I = —(2i)”+1a_("+1)"1'2ni !
i 22n+ Dk —(m+1)+1)
(1 — Wolly — -+ — wnwn)Z(n—i-l)K—(n—i-l)-i-l

x | f(Tw) J(T, w)?r e gy,
Dy

(1 — w2)(n+Dx
—_ oni (2i)"e~ (DK
2n+Dxk—m+D+1
(_(w w>)2(11+1)/(—(n+1)+l
X f(Tw) ’
Dy
Step 2 DenoteD, = T 'FoN{w | w1 = --- = w, = 0}. y leaves invariant
{w|wy=---=w, =0}forany 1< p <n — 1. Repeat Step & — 2 times more (i.e.
totally we perform Step & — 1 times). It is proved by induction that
1 1
2+ -+ +1 2+Dxk—@m+D+p
(_(w’ w))Z(n+l)K7(n+l)+p

J(T, w)? D gy,

(1 _ 12),21) (n+1)«

[ = (2i)'a~ "D (27 )P

J(T w2y, g,

T
X 0, f(Tw) (1— u_),zl)("Jrl)K
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and the step — 1 — p essentially repeats the argument in Step 1.
Forp = n — 1 we obtain

1 1

2n+ Dk —n+1)+1 2+ Dk -+ +n—1
(—(w, w))2+Dre=(ttn—1

I = (Zl-)na—(n—i-l)fc (—Zﬂi)n_l

J(T, w)2" D% qu, A di,

X f(Tw)

D, 1 1- L;}r21)(n+l)/<
i~ (D 2n+ 1k —n-1)!
2(n + Dk — 2)!

—on (27.[)n71

(_<w’ w))Z(l”H‘l)K*Z . 2(n+l)/( _
X . f(Tw) 1_ 1]),%)("+1)K J(T, w) dw, A dw,.
Step 3 The last integral is oveb,_1 = T"1FgN{w | w1 =0=--- = w,_1 = 0},
the fundamental domain for a ‘standard hyperbolic element’

241 22—
| = 2%

V=221 a2
2% 2

of SU (1, 1) acting on the unit disc if©. The change of coordinates
(Rew,, Imw,) - (r,¢), ¢ >0, 0<¢ <m),
where )
u—1
u+ti’

maps the unit disc to the upper half-plane with polar coordingtes), so thatD,,_1 is
mapped onto the upper half-annulus

u=re?,

wy, =

(Mt <r<A,0<¢ <)

Using formulas

_ Ardr ANdo
dw, Adwy, = — 21—,
Wy Wn llre’¢—|—i|4
_ 4r sing
— s :1— = —7,
(w, w) WnWn |re’¢’+i|2
1 u_)g _ 4i}-’e i¢ ’
(re=i¢ —i)2
1 2 dire'?
" (ref? +i)2

we obtain

2+ —-—n-1)
2(n + Lk — 2)!

I = 2n71a7(n+l)/<

!(27_[)1171 /n(sin¢)2(n+l))(72 d¢
0

1
) / FAw)L = wd) DG (T, w2 D= ar.
¢=constanir|~1<r<|a| ,



1094 T. Foth and S. Katok

But

wy, 2iel®
dwy |¢=constant= ? r= m r,
hence
i N2
ﬂ = w dwn|¢>=constant= 2—— dwn|¢=constan£
I' | p=constant 2ieltr 1- w,%
and we have

[ = 2" 1o~ (nt+Dr 2Qn+1x—n—-1)
2m + Dk — 2)!

!(27_[)11—1 /n(sin¢)2(n+l)lc—2 d¢
0

dw
x 2 / S (Tw) (L= i D (T, )20 =
p=constant - Wy

The last integral does not depend ¢ras the integral of &-invariant holomorphic
function ofw,. For the same reason it does not depend on the choice of theygpard
the path fromwg to ywg in D,—1. Hence we may takeg, ywo € J, and since or
dt =dw, /(1 - w,%), the last integral can be rewritten as

Y wo
/ F@Tw)L = w) D (T, w)? Dy,
wo
where the integration is over a segmenfof
Using Lemma 12 again, we go back to the integral over the axis,@&nd obtain
2n+1)k 2n+ Lk —n—-1)! (Zn)"*l
2 + Dk — 2)!

x / " (sing)20Dx-2 g5 / O X Y g,
0 20

I =2"al”

Finally, we obtain

Y020
(f. Opp) = la| 20 D¥C / FEz X) @ YD ar (35)
<0
with
_ @4k —n—D! | omina-o-1
= 7”2 .
(((n + D — D)2

The following corollary is immediate from Theorem 11.

COROLLARY 13. Lety1, yo € T be two primitive loxodromic elements having the same
axis. Ther®,, « = Oy, .

The integral (35) is well-defined and is called theriod of f over the closed geodesic
[go]. The reason for this definition is the following result.

THEOREM14. Let f be the lift of the cusp fornf (z) € Sz(u+1« (') to G. Then for any
lift [y0]y Of the closed geodesigg] to G we have

(f7 ®VO I() — e—z(ll-i-l)KiI[/a—(ll-i-l)Kc fdt
[VO]w
up—1 0 0 . i .
Here w = 0 eV 0 > € W with detu,,_1 = %%, and C is the constant from
0 e iV

Theorem 11.
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Proof. We make a change of variablgsised in §2.1 which maps the ‘horizontal’ geodesic
to the axis ofygp in such a way thag(0) = zo. According to §82.1 all lifts of the segment
of the geodesizo, yoz0] are given by{gwa, | w € W,0 < ¢ < s}, and all lifts of the
corresponding segment of the ‘horizontal’ geodesi¢dby; | w € W,0 < ¢ < s}. Using
local coordinates (31) o6 we obtain

YoZo
/ F@ Uz X)(z, Y FD< ar

-0

-1
¢ v08(0)
_ &(n‘l’l)l(\/o f(g-x)(l _ xr%)(n+l)Kj(g’ x)2(l1+l)l( d[

P &(""’DK / f(gx)(e*il//é-x)z(n‘l’l)l(j(g’ x)2(l1+l)l( dt
Lg~1roglw

— &(nJrl)KefZ(nJrl)Kiw f(Z);ZZ(nJrl)K dr.
[volw
The last two integrals are i& over the lifts|g~1y0g], and[yolw, andx, ¢, andz, ¢, are
evaluated at the corresponding value of the paramete; = (O, ..., x,(#)) = ¢ (0),
xn (1) = tanhr, ¢, = 'V /coshr. We used the cocycle identity to obtain the last equality:

;Z = j(g’x)é‘x-

The required formula now follows from Theorem 11. Notice that sifice f(z)¢2" 1%

is T'-invariant, the integral is iff\G. |

8. Cohomological equation for cusp forms: the vanishing result
8.1. Three-dimensional subalgebraNow we conside 2(I"\G) with the inner product
(7). The infinitesimal generators of the frame flow (28) and the one-parameter subgroup

1,1 0 0
my, = 0 ¢V 0 v eR/2nZ; C K,
0 0 eV

belong to the Lie algebrg = su(n,1). The corresponding left-invariant differential

are defined on a dense set of functiond.f{I"\ G), differentiable along the orbits of the
corresponding flows, and are given by the matrices

0,-1 0 O 9 0,1 0 O
D= 0O 0 1}, 30 = o i 0].
0O 1 0 v 0 0 —i

Complemented by the third differential operator

0,1 0 O
D= 0 o i,
0 —-i O
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they generate a three-dimensional Lie subalgebgavath the commutation relations

9 9 9
—.D|=29, | —.9|=-20, [D,9]=-2—.
I oy oY
Then DD D+ iD 5
pt=2"" 52T g v i
2 2 Ay

belong to the complexification @f g¢ = sl(n+1, C), and have the following commutation
relations:
W, 91 =29", [V, 2 1=-29, @2 =W (36)

They generate a three-dimensional real Lie algebra isomorphi¢ZdR). The properties
of these operators are exactly the same as in theicasé (cf. [9, 8§3;13, §2]).

PrRoPOSITION15. The differential operator® is skew-self-adjoint: ®* = —9, or
equivalently(DF, H) = —(F,DH) for F, H € LZ(F\G) N domain®.

A standard Fourier analysis argument shows that the spza&®\G) can be
decomposed into a direct sum of orthogonal subspgg€g, H,, such that

H,, = {F € L3T\G) | WF = mF}. (37)

Notice that the lift of a cusp fornf € Sz¢,+1) (") to the groupG belongs to the space
H2(n+l)lc-

PROPOSITION16.
1) U FeH,thenDTF € H, 2, and®" F € H,,_>;
2 @)Y =-927;, @) =-27.

8.2. Proof of Theorem 1. Suppose there is a cusp forfh € Sz(,+1) ('), such that
(f, ©y,.x) = O for all loxodromic elementgy € I'. First we show thaff (z)¢2"+1x e
BL(\G). If I'\G is compact, it follows from Remarks 1 and 2 following Definition 3.
Alternatively, '\G/K has a finite number of cusp6][ and it is sufficient to show that
f(z) and its first derivatives vanish at each cusp

Let R be a partial Cayley transforn22, Ch. 4] mapping biholomorphically a Siegel
domain

S ={(w,u) = (w,ug,...,up—1) € C" [ IMmw — |ug)? — - — |up_1/* > 0}

to B" = { Y7 ,1zl> < 1} in such a way thaR(cc) = o. By [6] [, = {y €
I' | y(o) = 0} # @. ThenR™II', R contains ‘parallel translations;, : (w,u) —
(w + m,u), m € Z), with j(T,,, (w,u)) = 1, and®(w,u) = (fIR)(w,u) =
F(R(w,u)j(R, (w, u))2"+D¥ is invariant undef;,: ®(w + m,u) = ®(w,u). Then
® has a Fourier—Jacobi expansi@2[Ch. 3, 8§52, Ch. 11]

O(w,u) = Y Y @)™,
mez

and sincef is a cusp form, by Satake’s theorefy Ch. 11, 851, (v) = O form < 0, and
the claim follows.



Spanning sets 1097

By Theorem 14 the functiory (z)¢2"+Dx satisfies Theorem 8, and its application
guarantees us existence of a Lipschitz func#onI’\G — C such that

DF = f(z)¢2n+Dr, (38)

LEMMA 17. Let F be the function obtained from the Theorem 8 far) 2" +D¥¢  where
f(2) € Som1)c (T). ThenF e L2(T'\G).

Proof. The uniform boundedness af| onI"\ G of finite volume would imply the required
result. IfI"\G is compact, it follows from the Lipschitz condition. R\ G is not compact,
it is sufficient to show thatF| is bounded at each cusp The proof is similar to the proof
for Fuchsian groups inlf. It is based on an application of a partial Cayley transfatm
described above. Ldt be the geodesic i given by Rew = 0, u = 0. ThenR([) is
the geodesic i\ B” going to the cusp. On I we have|®(w, u)| = O(e~2"), where
y = Imw. ThenonR(I), considered as an orbit @f, | F (¢5(g)) — F (g)| may be estimated
using (38) for any > 0 by the integrayy‘;o | (w, u)|y"TD¥ dy/y overl, which is finite.
The finiteness of the volume implies that for any> 0 there exists a neighborhood of
the cuspU (o) such thatd((w, u), R(I)) < €, and the uniform boundedness|@f| now
follows from the Lipschitz condition. m]

We decomposé according to (37) and rewrite (38) as the following system:

®_F2(n+l))(+2 + ©+F2(n+l)/(72 — f(Z)CZ('H_l)K

_ (39)
D Fjo+ D F;_=0, forall j#2n+ k.

The argument of Guillemin and Kazhda®, [Theorem 3.6] for negatively curved
surfaces is applicable to this situation since it depends only on the commutation relations
(36) and the fact which immediately follows from it fét,, € H,,

IDF Full? = 1D Full® + ml| Fn |1,
PROPOSITION18. Let F be a solution of (39). TheR; = Ofor j > 2(n + 1)k.
Thus Fo(,+1)«+2 = 0 and the first equation of (39) has the form

DF Fapuitye—2 = f(z)¢ 20K,

PROPOSITIONL9. If f(g) = f(z)¢2"*+V« is the lift of a holomorphic cusp fornf e
Som+1)c 10 G, then®~ f(z)¢2+Dx = 0.

Proof. It follows immediately from the fact that has been, apparently, first pointed out in
[7] (see also], 85,3, p. 203]) that for any € p~

Y f(g) = j(g, 02"V (Y f)(2).

HereY is the linear combination of the partial derivativie9z; wherez; are coordinates
on the bounded domaiB” andz = g(0) = (z1,...,2,). FOrY = ®~ € p~ this can be
easily checked by a direct differentiation along the orbit of the frame fidw) using the
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decompositiory = go - my corresponding to the local coordinates (31) with coefficients
of

aix -+ awm b
80 =

apl -+ Gun by

[ R Cn d

independent orr. Then

a
D(f(z,2)¢") = <Z(ajnd - Cnbj)% —mc, df(z, Z))§’n+2
J

(ajnd_cnbj)%> m—2
i <Z (dd)? o

0z

Sincef (z) is holomorphic we have

Z)‘f(z)g“z("“)" = (Z @%)gz(wm—z -0 -
J

The end of the proof goes exactly as ¥8]. By Proposition 19
D DY a2 =D f(2)¢?" TP =0.
Therefore
0=(F D DTF, ) =—IDF 17
= 2(n+1)x—25 2(n+x—-2) = 2(n+x-211 >

hencef (2)¢2" V=2 = ®+ Fp, 112 = 0. Sincer # 0, f(z) = 0. O
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