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Abstract. LetG be a semisimple Lie group with no compact factors,K a maximal compact
subgroup ofG, and0 a lattice inG. We study automorphic forms for0 if G is of real rank
one with some additional assumptions, using a dynamical approach based on properties of
the homogeneous flow on0\G and a Livshitz type theorem we prove for such a flow. In the
Hermitian caseG = SU(n,1) we construct relative Poincar´e series associated to closed
geodesics on0\G/K for one-dimensional representations ofK, and prove that they span
the corresponding spaces of holomorphic cusp forms.

0. Introduction
Let G be a real connected semisimple Lie group with no compact factors,K a maximal
compact subgroup ofG, and 0 a discrete subgroup ofG. A general definition of
automorphic forms for0 (cf. [11] and [3]) depends on a finite-dimensional representation
of K. It includes classical holomorphic automorphic forms on Fuchsian groups, Maass
wave forms, and automorphic forms on bounded symmetric domains (these terms are
defined in §1.1). A convenient construction of automorphic forms by means of relative
Poincaré series introduced in [20] and [21] allows us to ‘extend’ an automorphic form for
a subgroup00 ⊂ 0 to the whole discrete group0. For00 = {e} we obtain Poincar´e series,
which can be constructed for any smooth absolutely integrable function onG [1, §5]. For
cocompact0 and in some other cases which are discussed in §1.2, (relative) Poincar´e series
provide cusp forms. It may happen that a Poincar´e series is identically zero. However, it
has been shown (see [22, Ch. 3;2, Ch. 5]) that for holomorphic automorphic forms on a
symmetric bounded domain there exist non-zero Poincar´e series for suitable weights. It is
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not easy, however, to construct relative Poincar´e series for non-trivial00, and even less so
to prove that a certain collection spans the corresponding space of cusp forms.

In the case whenG is of real rank one and with finite center, and0 is a lattice inG, i.e.
0\G has finite Haar measure, we propose a program of constructing spanning sets for cusp
forms based on dynamical properties of the homogeneous flow on0\G and a Livshitz-
type theorem that we prove for such a flow (Theorem 8). We carry out this program in the
case when, in addition,K has non-trivial one-dimensional representations. In this case the
symmetric spaceG/K is Hermitian of real rank one, and by the classification of symmetric
spaces, it is a complex hyperbolic space

H
n
C

= SU(n,1)/S(U(n)× U(1))

for somen ≥ 1. Let0 be a lattice inSU(n,1), andκ ≥ 1 be a half-integer such that
(n + 1)κ is an integer. For each loxodromic elementγ0 ∈ 0 we construct a relative
Poincaré series2γ0,κ which is aC-valued holomorphic cusp form inS2(n+1)κ (0) (for
exact definitions see §§1.1, 1.2, and 6.3). The main result of this paper is the following
theorem.

THEOREM 1. The relative Poincaŕe series{2γ0,κ , γ0 ∈ 0 loxodromic} spanS2(n+1)κ (0).

This is an extension of a result by Katok [13] for the classical case of Fuchsian groups
(n = 1). The method is based on duality between the introduced relative Poincar´e
series and closed geodesics on0\G/K (Theorems 11 and 14), dynamical properties of
the frame flow on0\G which imply a Livshitz theorem-type result (Theorem 8), and
the existence of a three-dimensional Lie subalgebra associated to the frame flow which
enables the harmonic analysis on0\G that completes the proof. The proof utilizes two
essential features of the complex hyperbolic space: real rank one and the presence of
the complex structure. A natural question of finding finite spanning sets for cusp forms
has been addressed in [15] for the classicaln = 1 case. The main ingredient there
was an approximate version of the Livshitz theorem [16] for geodesic flows, based on
more subtle dynamical considerations. The same scheme will probably work for complex
hyperbolic spaces of all dimensions and will be pursued elsewhere. The paper is organized
as follows. In §1 we review the general definition of automorphic forms and the relative
Poincaré series, and discuss their convergence and further implications under additional
assumptions. §2 describes the homogeneous flow on0\G and its relation to the geodesic
flow on the unit tangent bundleS(0\G/K). In §3 we prove a special Livshitz theorem
for the homogeneous flow on0\G and describe a program of constructing spanning sets
for cusp forms in the real rank one case. In §§4–8 we restrict ourselves to the case of the
complex hyperbolic space, construct relative Poincar´e series associated to closed geodesics
in 0\G/K, and prove Theorem 1.

1. Automorphic forms on symmetric spaces of semisimple Lie groups
1.1. Definitions. Let G be a real connected semisimple Lie group with no compact
factors [5, 1.13.12],g its Lie algebra, andK a maximal compact subgroup ofG. We
shall denote the homogeneous space byX = G/K. The groupG acts on itself by left
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multiplications, and this action projects to the action onX. Let 0 be the fixed point ofK
in X, then the natural projection

π : G → X

is given by

π : g 7→ g(0). (1)

The Cartan decomposition corresponding toK is

g = k ⊕ p, (2)

wherek is the Lie algebra ofK, ad(K)p ⊂ p, andp is the orthogonal complement tok
with respect to the Killing form ong. The differential(dπ)e at the identity ofG identifies
p with T0(X). The kernel of(dπ)e is k [10, p. 208].

To eachY ∈ g is associated a left-invariant differential operator also denoted byY ,

Yf (g) = d

dt
f (g · exptY )|t=0; (3)

this linear map fromg into the algebraD(G) of left-invariant differential operators onG
extends to an isomorphism ofU(g), the universal enveloping algebra of the Lie algebra
g (with complex coefficients) ontoD(G). In particular, one may consider differential
operatorsY for Y ∈ gc, the complexification ofg. On G0 the centerZ(g) of U(g)
corresponds to the left and right invariant operators and is isomorphic to a polynomial ring
in ` letters wherè is the real rank ofG. The general definition ofautomorphic formsin the
sense of Harish-Chandra [11] and Borel [3] assumes only that0 is a discrete subgroup of
G. In this paper we studycusp forms, which are automorphic forms with some additional
hypotheses imposed, in the case when0 is not cocompact, concerning the behavior close
to certain boundary points. Naturally, if0 is cocompact, every automorphic form is a cusp
form.

Let 0 be a lattice inG, andV be a finite-dimensional complex vector space. In
what followsGL(V ) will act on V on the right, and letρ : K → GL(V ) be a fixed
(anti-)representation ofK in GL(V ). Let (· , ·) be a Hermitianρ(K)-invariant inner
product onV and| · | the corresponding norm. We define the norm‖ · ‖p (1 ≤ p < ∞) on
measurableV -valued,0-invariant on the left functions onG as usual by

‖F‖p =
( ∫

0\G
|F(g)|p dg

)1/p

< ∞,

wheredg is the Haar measure on the groupG, and the norm‖F‖∞ as the essential
supremum of|F | on G, and letLp(0\G) ⊗ V (1 ≤ p ≤ ∞) be the space of suchF
for which‖F‖p < ∞.

Definition 2. A vector-valued functionF : G → V is calledZ(g)-finite if Z(g) · F is
annihilated by an idealI of Z(g) of finite codimension.

Remark.If I has codimension one, this means thatF is an eigenfunction of every operator
in Z(g).
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Definition 3. A smooth vector-valued functionF : G → V is called acusp form for0 if:
(3.1) F is 0-invariant on the left andK-equivariant on the right, i.e.F(γgk) = F(g)ρ(k)

for anyγ ∈ 0, g ∈ G, andk ∈ K;
(3.2) F isZ(g)-finite;
(3.3) F ∈ L∞(0\G)⊗ V .

Remarks.1. Conditions (3.1) and (3.2) imply thatF is a real-analytic function on0\G
[3], hence a functionF which satisfies (3.1) and (3.2) satisfies (3.3) if and only if|F | is
bounded on0\G.

2. If 0 is cocompact, the condition (3.3) is automatic.
3. If ρ is trivial, F is K-invariant on the right and is often referred to as a cusp form

of weightzero. In the case when0 = SL(2,R) such cusp forms are calledMaass wave
forms. They are eigenfunctions of the non-Euclidean Laplacian.

Automorphic forms may be defined using anautomorphy factor, i.e. a smooth map
µ : G×X → GL(V ) that satisfies the 1-cocycle property, i.e.

µ(g1g2, x) = µ(g1, g2(x))µ(g2, x) (4)

for all g1, g2 ∈ G andx ∈ X.
If a smooth functionf : X → V satisfies theautomorphy equation

(f |γ )(x) := f (γ (x))µ(γ, x) = f (x), (5)

for anyγ ∈ 0 andx ∈ X, then its ‘lift’ to G, f̃ : G → V defined by

f̃ (g) = f (g(0))µ(g,0), (6)

satisfies (3.1) withρ(k) = µ(k,0).

Definition 4. Let µ be an automorphy factor. A smooth functionf : X → V is called a
cusp form of typeµ if its lift to the groupG defined by (6) is a cusp form of the Definition 3
with ρ(k) = µ(k,0).

We denote the space of cusp forms of typeµ (as well as the space of their lifts toG) by
Sµ(0).

The spaceL2(0\G)⊗ V is a Hilbert space with the inner product

(F1, F2) =
∫
0\G

(F1(g), F2(g)) dg (7)

corresponding to the norm‖ · ‖2 introduced above (inside the integral is the inner product
onV ). Using the Cartan decomposition of the groupG corresponding to (2),

g = gxk, (8)

wherek ∈ K andgx depends only onx = g(0) ∈ X, and the cocycle property ofµ (4), we
obtain, for the lifts of automorphic forms̃f1(g) = f1(x)µ(g,0) andf̃2(g) = f2(x)µ(g,0)
with x = g(0), an analogue of the Petersson inner product

(f1, f2) := (f̃1, f̃2) =
∫
0\G/K

(f1(x)µ(gx,0), f2(x)µ(gx,0)) dV, (9)
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wheredV is aG-invariant volume form on the symmetric spaceX.
Since0 is a lattice, we have

L∞(0\G)⊗ V ⊂ L2(0\G)⊗ V ⊂ L1(0\G)⊗ V.

Therefore, the integral (9) converges for cusp forms; in fact, it converges if eitherf1 or f2

is a cusp form. ThusSµ(0) ⊂ L1(0\G)⊗ V . Notice that in general a function satisfying
(3.1) and (3.2) and belonging toL1(0\G) ⊗ V is not necessarily a cusp form (e.g. for
G = SL(2,R), 0 = SL(2,Z) and Maass wave forms, a residual Eisenstein series has
behavior likeya, for a < 1

2, in the cusp; it satisfies (3.1) and (3.2), is inL1(0\G) but is
not bounded), although for holomorphic forms on a symmetric bounded domain it is (see
Remark 1 below).

LetX be a symmetric bounded domain. Iff is a holomorphic function onX, condition
(3.2) is satisfied [3]. Let Hp

µ(0\G) be the subspace ofLp(0\G) ⊗ V consisting of
holomorphic functions onX which satisfy (5). ThenSµ(0) = H∞

µ (0\G).
Remarks.1. For holomorphic automorphic forms on a symmetric bounded domainX all
spacesHp

µ(0\G) (1 ≤ p ≤ ∞) coincide for suitableµ by Satake’s theorem [24; 2, Ch. 11,
§5].

2. Although, in general, dimSµ = ∞, for holomorphic automorphic forms on a
symmetric bounded domainX, dimSµ < ∞ [22, Ch. 4;12; 2, Ch. 11, §5].

3. The classical case of holomorphic automorphic forms on Fuchsian groups
corresponds toG = SL(2,R) ≈ SU(1,1).

1.2. The relative Poincaŕe series. Let 00 be a subgroup of0. The following
construction allows us to ‘extend’ an automorphic form for00 to an automorphic form
for 0.

THEOREM 5. Let00 be a subgroup of0, f :X→V a function satisfying the automorphy
equation (5) for00, andf̃ its lift to the groupG by the formula (6) such that:
(1) f̃ isZ(g)-finite;
(2) f̃ ∈ L1(00\G)⊗ V .
Then the series200 = ∑

γ∈00\0 f |γ , called therelative Poincar´e series for00, converges
absolutely and uniformly on compact sets, and represents a function satisfying (3.1) and
(3.2), and belonging toL1(0\G)⊗ V .

The proof follows the lines of the argument of Harish-Chandra for the Poincar´e series
(see [2, 3]). It is proved that the series converges absolutely and uniformly on compact sets
and satisfies (3.1) and (3.2). For cocompact0 this proves that200 is a cusp form. If0
is a lattice, it follows that2̃00 ∈ L1(0\G) ⊗ V which, without additional assumptions,
does not imply that200 is a cusp form. However, for holomorphic automorphic forms on
a symmetric bounded domain, according to Satake’s theorem, the relative Poincar´e series
200 are cusp forms.

If X = G/K is a symmetric bounded domain, then any absolutely integrable function
onX, for example any polynomial onX, produces a holomorphic cusp form for the trivial
00 = {e} [2, Ch. 11, §1].
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If 00 is a parabolic subgroup of0, the above construction gives so-called Poincar´e–
Eisenstein series.

For general00, it is not easy to find a functionf which satisfies conditions (1) and (2)
of Theorem 5. We shall give a construction for cyclic loxodromic subgroups of isometries
of complex hyperbolic spaces in §6.3.

2. The homogeneous flow
2.1. Definitions. From now on we suppose, in addition to the standing assumptions of
§1.1, thatG is of real rank one and has finite center (and therefore non-compact simple).
Then any non-zeroD ∈ p defines a maximal Abelian subspace ofp, a = RD, consisting
of real semisimple elements (cf. [10, pp. 401, 431]). We fix a non-zeroD ∈ p and let

A = {exptD = at | t ∈ R}
be the corresponding maximal split Abelian subgroup ofG. Acting by right multiplications
onG, it defines a standard flow̃αt onG,

α̃t (g) = gat . (10)

An orbit of g ∈ G, {gat | t ∈ R}, projects by (1) to a geodesic{gat (0) = gatg
−1(xg) |

t ∈ R} onX passing throughxg = g(0) [10, p. 208]. The subgroupA itself projects onX
to the ‘standard geodesic’

I = {at (0) | t ∈ R}
passing through 0. There is a subgroupW ⊂ K which, acting onX on the left by
isometries, fixesI pointwise. ThenAW = WA = Z(A), the centralizer ofA.

Definition 6. An elementg ∈ G is calledhyperbolic(or regular) if it is conjugate to an
element inA.

Definition 7. An elementg ∈ G is calledloxodromicif it is conjugate to an element in
Z(A).

Any loxodromic (and, therefore, hyperbolic) element inG fixes a geodesic inX, called
its axis, and has two fixed points in the boundary∂X. It is easy to see that geodesics inX
are exactly the axes of loxodromic elements inG.

Geodesics naturally lift toG/W which can be identified with the unit tangent bundle
S(G/K). Recall that as subgroups ofG acting on the spaceX = G/K on the left by
isometries,K fixes the point 0∈ X, andW ⊂ K fixesI pointwise, and hence the unit
tangent vector toI at 0 is denoted byι. Thus we have two natural mappings:

π : G → G/K

given by (1) and

σ : G → G/W

given by
σ(g) = g∗(ι),
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whereg∗ is the differential ofg. Defining the mapping

τ : G/W → G/K

such thatτ ◦ σ = π , we see thatG/W is a sphere bundle overG/K with the fiber at
each point identified withK/W , the unit tangent space at this point. For any geodesicC

in X passing through a pointx0 there exists ag ∈ G mappingI intoC in such a way that
g(0) = x0. This follows from the fact that the groupG acts transitively on the unit tangent
bundleS(X) = G/W . The transformationg is not unique but is determined up to the right
multiplication by the subgroupW which fixes every point ofI. Thus we obtain a family
of lifts of C, {gwat | w ∈ W, t ∈ R} to the groupG parametrized by the groupW , which
are orbits of the flow̃αt . Since the subgroupsA andW commute, the flow̃αt projects to
thegeodesic flowon the factorG/W , denoted byαt :

αt (σ (g)) = σ(α̃t (g)).

We see that all lifts{gwat | w ∈ W, t ∈ R} project to the orbitαt(gW) of the geodesic
flow onG/W .

Let0 be a lattice inG and0\X = M. The action ofA descends to the factor0\G and
defines ahomogeneous flow̃ϕt on0\G denoted byϕ̃t ,

ϕ̃t (0g) = 0gat .

The mappingsπ , σ , andτ also descend to the corresponding left factors by0, and the
homogeneous flow̃ϕt projects to thegeodesic flowon S(M) = 0\G/W , denoted byϕt ,
by the formula

ϕt(σ (g)) = σ(ϕ̃t (g)).

For the base pointx = g(0) = π(g) ∈ X we shall use the same notation:

ϕt(x) = π(ϕ̃t (g)).

Respectively, we have two differential operators:

Df (g) = d

dt
f (ϕ̃t (g))|t=0,

defined on the set of functions on0\G differentiable along the orbits of̃ϕt , and

Df (v) = d

dt
f (ϕt (v))|t=0,

defined on the set of functions on0\G/W differentiable along the orbits ofϕt .
The following characterization of closed geodesics inM = 0\X is immediate. Closed

geodesics inM are the axes of loxodromic elements in0. They are in one-to-finite
correspondence with conjugacy classes of primitive loxodromic elements in0.

It is easy to see that closed geodesics inM lift to closed orbits of the geodesic flowϕt
on0\G/W while their lifts to0\G are not necessarily closed.

We shall denote a closed geodesic inM corresponding to the axis of a loxodromic
elementγ0 ∈ 0 in 0\G/K as well as its lift to0\G/W by [γ0], and a family of lifts to
0\G by {[γ0]w | w ∈ W }.
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2.2. Dynamics of homogeneous and geodesic flows.It is a standard fact that there exists
a leftG-invariant Riemannian metric onX = G/K relative to whichX is a symmetric
space [18, Ch. 11, Theorem 8.6]. Since the real rank ofG is equal to one, this metric is
of negative sectional curvature, which is the main reason for the following properties of
the homogeneous flow̃ϕt and the geodesic flowϕt which we review below. A standard
procedure [18, Ch. 11, §6] providesG-invariant Riemannian metrics onG andG/W (this
can be done for any compact subgroup ofG in place ofW ) in such a way that the distance
(which we will denote in both spaces byd) does not increase after projection: for any
g1, g2 ∈ G,

d(σ(g1), σ (g2)) ≤ d(g1, g2). (11)

The Riemannian volume onG coincides with the Haar measure.

We have seen that the homogeneous flowϕ̃t on 0\G, considered as a fibered bundle
over0\G/W , projects to the geodesic flowϕt on the base0\G/W . In addition, ifg1 and
g2 belong to the same fiber, i.e.g2 = g1w for somew ∈ W , we have

d(ϕ̃t (g1), ϕ̃t (g2)) = d(g1, g2)

by left-invariance of the metric and sincew andat commute.

The geodesic flowϕt on0\G/W is Anosov (hyperbolic)[17, Theorem 17.6.2] with the
correspondingDϕt -invariant splitting of the tangent bundle of0\G/W :

T (0\G/W) = E0 ⊕Es ⊕ Eu,

and foliationsW0 (the orbit foliation),Ws , andWu, respectively.

It follows that the homogeneous flow̃ϕt is an isometric extension ofϕt and, as such,
is partially hyperbolic, i.e. there is aC∞ Dϕ̃t -invariant splitting of the tangent bundle of
0\G:

T (0\G) = Ẽ0 ⊕ Ẽs ⊕ Ẽu

with the following properties. The integral manifolds of the distributionẼ0 form the
neutral foliation denoted byW̃0; its leaf through a pointg beinggW × Õ(g), where
Õ(g) is the orbit of the flow. The flow restricted to the leaves ofW̃0 is isometric. The
integral manifolds of the distributions̃Es(Ẽu) form thestable (unstable)foliation denoted
by W̃ s(W̃u).

Let us denote the distance along the leaves of the foliationsW̃ s andW̃u by ds anddu,
respectively. Then there existC, λ > 0 such that for anyg1, g2 lying on the same leaf of
W̃ j (j = u, s),

dj (ϕ̃t (g1), ϕ̃t (g2)) ≤ Ce−λ|t |dj (g1, g2) (12)

for j = s, t ≥ 0 and forj = u, t ≤ 0.

The foliationsW̃0, W̃ s , and W̃u are transversal and project to the corresponding
foliationsW0, Ws , andWu of ϕt with the same estimates (12). The homogeneous flow
ϕ̃t preserves the Haar measure on0\G while ϕt preserves the Riemannian volume on
0\G/W .
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3. Dynamical approach to construction of cusp forms in the real rank one case
3.1. Cohomological equation for the homogeneous flow.The hyperbolic properties of
the geodesic flow on0\G/W imply the Anosov closing lemma and its strengthening (see
[17, Theorem 6.4.15 and Proposition 6.4.16]). As a consequence, the Livshitz theorem
holds. Since the spaceS(M) may not be compact, it is natural to formulate it for the class
BL of bounded Lipschitz functions.

THE LIVSHITZ THEOREM. Letf ∈ BL(S(M)) be such that it has zero integrals over all
closed orbits of the geodesic flow onS(M). Then there exists a Lipschitz functionF on
S(M) which is differentiable in the direction of the flowϕt , and such that

DF = f.

This theorem has been proved in [19] for Anosov flows on compact manifolds. It has
been proved later [4] that if the functionf isC∞(S(M)), the solution is alsoC∞(S(M)).
The original proof works with minor alterations for manifolds with cusps (the proof for
Fuchsian groups with cusps is given in [14, Appendix]).

By the Moore’s ergodicity theorem [26, Theorem 2.2.6] the homogeneous flow on0\G
is ergodic and hence topologically transitive, but it is not Anosov, the closing lemma does
not hold, and hence a straightforward generalization of the Livshitz theorem does not hold
either. However, the same conclusion holds under a stronger hypothesis, and the proof is
similar to the proof of the Livshitz theorem for the geodesic flow.

THEOREM 8. (Special Livshitz theorem)Letf ∈ BL(0\G) be such that for every closed
geodesic[γ0] in S(M) and everyw ∈ W the integral in0\G∫

[γ0]w
f (ϕ̃s(g)) ds = 0.

Then there exists a Lipschitz functionF on 0\G which is constant onW -cosets and
differentiable in the direction of the flow̃ϕt , such that

DF = f. (13)

Remark.We shall give a proof for real-valued functions. Then the theorem will obviously
hold for functions valued in anyRm.

Proof. The homogeneous flow on0\G is topologically transitive, i.e. there exists ag ∈ G
whose orbitÕ(g) = {ϕ̃t (g) | t ∈ R} is dense in0\G. We define a functionF on this orbit
by the formula

F(ϕ̃t (g)) =
∫ t

0
f (ϕ̃s(g)) ds.

We need to prove thatF satisfies a Lipschitz condition oñO(g) and hence can be extended
to0\G as a Lipschitz function. Givenε > 0, let t1 < t2 be such that

d(ϕ̃t1(g), ϕ̃t2(g)) < ε. (14)

We will show that ∫ t2

t1

f (ϕ̃s(g)) ds = O(ε). (15)
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As is customary, ‘= O(x)’ means that the expression is ‘≤ Cx’ for some constantC. We
will use this notation to avoid an accumulation of constants.

Since the homogeneous flow is not Anosov, we cannot hope to be able to approximate
anyε-close piece of the dense orbit by a closed one as for the geodesic flow. Nevertheless,
the close relation with the geodesic flow allows us to prove the following.

LEMMA 9. (Approximation lemma)Using the notation above, for a piece of a dense orbit
of ϕ̃t (14), there is a lift of a closed orbit ofϕt to 0\G, {ϕ̃t (p̃) | 0 ≤ t ≤ T } with
|T − (t2 − t1)| = O(ε), such that for0 ≤ t ≤ t2 − t1

d(ϕ̃t1+t (g), ϕ̃t (p̃)) = O(εe−λ(min(t,t2−t1−t ))). (16)

Proof. By (11) the projection ofÕ(g) onto0\G/W is a dense orbitO(v) of the geodesic
flow ϕt with v = σ(g), and it follows that

d(ϕt1(v), ϕt2(v)) < ε.

Let O(v)|t2t1 = {ϕt(v) | t1 ≤ t ≤ t2} and Õ(g)|t2t1 = {ϕ̃t (g) | t1 ≤ t ≤ t2} be the
corresponding pieces of orbits. Let us denoteϕt1v = v1, ϕ̃t1g = g1, ϕt2v = v2 and
ϕ̃t2g = g2. Since the geodesic flowϕt is Anosov, by the Anosov closing lemma there
exists ap ∈ 0\G/W such thatd(p, v1) = O(ε) and its orbitO(p) = {ϕt(p) | t ∈ R} is
closed, i.e.ϕT (p) = p with the periodT satisfying|T − (t2 − t1)| = O(ε). The pointp
can be chosen such that the leaf of the unstable foliation containingv1, Wu(v1), and the
leaf of the stable foliation containingp, Ws(p), intersect, and since they are transversal,
they intersect at a pointWs(p) ∩Wu(v1) = q, anddu(v1, q) = O(ε).

Lift Wu(v1) to W̃u(g1). Sinceq ∈ Wu(v1) its lift W̃u(g1) intersectsqW , so let
W̃u(g1) ∩ qW = q̃, and similarly, W̃ s(q̃) intersectspW , W̃ s(q̃) ∩ pW = p̃, and
ϕ̃T (p̃) ∈ pW (see Figure 1 which represents the picture in the direction transversal to
the orbits).

Since the distance betweenϕt(p) andϕt(q) decreases exponentially fort > 0, and
ds(p, q) = O(ε), we have

ds(ϕt (p), ϕt (q)) = O(εe−λt),

and since all leaves are transversal we have the same estimate onW̃ s(q̃);

ds(ϕ̃t (p̃), ϕ̃t (q̃)) = O(εe−λt).

Similarly, since the distance betweenϕt2−t1−t (v1) andϕt2−t1−t (q) decreases exponentially
for t > 0, anddu(ϕt2−t1(v1), ϕt2−t1(q)) = O(ε), we have

du(ϕt (v1), ϕt (q)) = O(εe−λ(t2−t1−t )),

and the same estimate oñWs(q̃):

du(ϕ̃t (g1), ϕ̃t (q̃)) = O(εe−λ(t2−t1−t )).

Therefore, for 0≤ t ≤ t2 − t1 we have simultaneous estimates

d(ϕt1+t (v), ϕt (p)) = O(εe−λ(min(t,t2−t1−t ))),
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and
d(ϕ̃t1+t (g), ϕ̃t (p̃)) = O(εe−λ(min(t,t2−t1−t ))). 2

It follows from (16) that∣∣∣∣
∫ t2

t1

f (ϕ̃s(g)) ds −
∫ T

0
f (ϕ̃s(p̃)) ds

∣∣∣∣ = O(ε),

and since by the hypothesis ∫ T

0
f (ϕ̃s(p̃)) ds = 0,

we obtain the required estimate (15). This proves the claim. ThusF can be extended
from the dense orbit to a Lipschitz function in0\G. SinceDF = f on the dense orbit, it
follows thatF is differentiable in the direction of the homogeneous flow andDF = f in
0\G.

A similar argument shows that the functionF is constant onW -cosets. Letσ(g1) =
σ(g2) = v. There existg′

1 andg′
2 on the dense orbit of̃ϕt ε-close tog1 andg2, respectively.

Then the projection to0\G/W is anε-close orbit ofϕt . Find a closed orbit ofϕt ε-close
to the projection, and lift it back to0\G in the same manner as we described before. It
follows from the exponential estimates that

|F(g′
2)− F(g′

1)| = O(ε),

and asε → 0, we obtainF(g1) = F(g2). 2
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3.2. Spanning of cusp forms via relative Poincaré series in the real rank one case.Our
program of constructing spanning sets forSµ(0) consists of three steps.

(1) Construction of relative Poincaré series associated to closed geodesics inM =
0\G/K. Fix a finite-dimensional complex vector spaceV and an automorphy factor
µ : G×X → GL(V ). For each loxodromic elementγ0 ∈ 0 find a functionqγ0 : X → V

which satisfies conditions of Theorem 5 for the subgroup00 = 〈γ0〉. Having such a
function, we can apply Theorem 5 to obtain a relative Poincar´e series2γ0, and prove that
they are cusp forms.

(2) The period formula. Let f ∈ Sµ(0), γ0 ∈ 0 loxodromic, andf̃ be the lift off to
G. Then for any lift[γ0]w, w ∈ W of closed geodesic[γ0] toG,

(f,2γ0) = C

∫
[γ0]w

f̃ dt

with an explicit constantC depending only on[γ0]w.
(3) Cohomological equation for cusp forms. In order to prove that the relative Poincar´e

series{2γ0, γ0 ∈ 0 loxodromic} spanSµ(0), we assume that there is a cusp form
f ∈ Sµ(0) such that(f,2γ0) = 0 for all relative Poincar´e series2γ0. In order to apply
the special Livshitz theorem (Theorem 8) we first need to show thatf̃ ∈ BL(0\G) and
then use (2). Thus we obtain a solutionF of the cohomological equationDF = f̃ , which
is Lipschitz and differentiable in the direction of the flow̃ϕt , hencef̃ is a coboundary.
Proving that cusp forms cannot be coboundaries will imply the result.

We are able to carry out this program in the case whenK has non-trivial one-
dimensional representations. In this case the symmetric space is Hermitian of real rank
one, and by the classification of symmetric spaces [10, p. 518], it is a complex hyperbolic
space

H
n
C

= SU(n,1)/S(U(n)× U(1))

for somen ≥ 1. The rest of the paper is devoted to this case.

4. The complex hyperbolic space
4.1. The unit ball model. The groupG = SU(n,1) is the group of(n + 1) × (n + 1)
complex unimodular matrices preserving the Hermitian form

〈z,w〉 = z1w̄1 + · · · + znw̄n − zn+1w̄n+1

onC
n,1. In other words,

G = {A ∈ SL(n + 1,C) | 〈A · z,A ·w〉 = 〈z,w〉 ∀z,w ∈ C
n,1}

= {A ∈ SL(n + 1,C) | AT · S · Ā = S},

where 1n denotes then × n identity matrix, S =
(

1n 0
0 −1

)
, and · is used for matrix

multiplication.
The maximal compact subgroup ofG

K = S(U(n)× U(1)) =
{(
un 0
0 a

) ∣∣∣∣ un ∈ U(n), a = (detun)−1
}
.
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The symmetric spaceG/K is called thecomplex hyperbolic spaceand is denoted by
H
n
C

. It can be identified with the projectivized space ofnegativevectorsz ∈ Cn,1, i.e. such
that〈z, z〉 < 0:

H
n
C

∼= P({z ∈ C
n,1 | 〈z, z〉 < 0}),

or, equivalently, with the set ofnegativelines inCn,1, or in homogeneous coordinates, with
the unit ball inCn:

Bn = {z ∈ C
n | z1z̄1 + · · · + znz̄n < 1}.

The last identification is obtained by the biholomorphic embedding

C
n → P(Cn,1)

z 7→
(
z

1

) (17)

of Cn onto the affine chart ofP(Cn,1) defined byzn+1 6= 0. Bn is a bounded domain
in Cn and hence a complex manifold. An invariant Riemannian metric onBn of the
form ds2 = gij dzidz̄j obtained by a standard construction [18, Ch. 9, §6] is of negative
sectional curvature and is called theBergman metric. We normalize it according to [8,
III.1.3] so that the sectional curvature is pinched between−1 and−1

4. Using [10, Ch. 8,
Proposition 2.5], one easily obtains the following relation between the volume formdV on
Bn corresponding to the Riemannian metric and the Euclidean volume formdVE onCn:

dV = 4n dVE
(−〈z, z〉)n+1

. (18)

Using the above terminology, we call a vectorz ∈ Cn,1 positiveif 〈z, z〉 > 0 andnull
if 〈z, z〉 = 0. We shall always assume that negative and null vectors are represented in the
form (17), and keep the notation〈z,w〉 = z1w̄1 + · · · + znw̄n − 1 for them.

4.2. The tangent bundle.For each pointz = (z1, . . . , zn) ∈ Bn we writezj = xj + iyj .
The real tangent space atz, Tz(Bn) = Tz, refers to the tangent space of the underlying
2n-dimensional realC∞ manifold and has a basis

∂

∂x1
(z),

∂

∂y1
(z), . . . ,

∂

∂xn
(z),

∂

∂yn
(z).

The vector fields

∂

∂zj
= 1

2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂z̄j
= 1

2

(
∂

∂xj
+ i

∂

∂yj

)

form a basis of the complexificationT cz of Tz. The real tangent spaceTz can be identified
with then-dimensional complex subspace ofT cz of the vectors in the form

η =
n∑
j=1

ηj
∂

∂zj
+ η̄j

∂

∂z̄j
,

whereηj ∈ C. We shall always refer to the tangent vectors as being in the formη =
( η1···
ηn

)
(ηj ∈ C).
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4.3. The action ofSU(n,1). The groupG = SU(n,1) acts onBn by biholomorphic
transformations (automorphisms): for

g =



a11 · · · a1n b1

· · · · · · · · · · · ·
an1 · · · ann bn

c1 · · · cn d


 , (19)

g(z) =
(
a11z1 + · · · + a1nzn + b1

c1z1 + · · · + cnzn + d
, . . . ,

an1z1 + · · · + annzn + bn

c1z1 + · · · + cnzn + d

)
(20)

(sometimes we will also usegz for this action), which are isometries ofBn with respect
to the Bergman metric. This action corresponds to the left multiplication onG. The
differential ofg : Bn → Bn at z,

g∗ : Tz → Tg(z),

is given by the Jacobian matrix which can be written as

J (g, z) = (c · z + d)−2(A(c · z + d)− (A · z+ b) · c), (21)

where

A =

a11 · · · a1n

· · · · · · · · ·
an1 · · · ann


 , b =


b1

· · ·
bn


 , c = (c1 · · · c2), z =


 z1

· · ·
zn


 .

A direct calculation shows that

detJ (g, z) = (c · z+ d)−(n+1) = (c1z1 + · · · + cnzn + d)−(n+1). (22)

The group of biholomorphic automorphisms ofBn is actually

PU(n,1) = G/Z,

where
Z = {1n+1, ε1n+1, . . . , ε

n1n+1}
is the center ofG (ε is the primitive(n+ 1)th root of 1).

4.4. The Cartan decomposition.The Lie algebra of the groupG is g = su(n,1). The
Cartan decomposition (2) is

g = k ⊕ p.

k is the Lie algebra ofK consisting of(n+ 1)× (n+ 1) complex matrices of the form(
U 0
0 iλ

)
,

whereU is ann × n skew Hermitian matrix,λ ∈ R, and trU + iλ = 0, andp consists of
matrices
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(
0n η
tη 0

)
, (23)

whereη =
( η1···
ηn

)
∈ Cn.

The differential at the identity(dπ)e of the natural mapping

π : G → Bn, π : g 7→ g(0), (24)

maps
(

0n η
t η 0

)
∈ p to the tangent vectorη =

( η1···
ηn

)
∈ Tg(0) thus identifyingp = T0(G/K)

with Tg(0)(Bn).
Using the Cartan decomposition of the groupG (8), we can write any element

g =



a11 · · · a1n b1

· · · · · · · · · · · ·
an1 · · · ann bn

c1 · · · cn d


 ∈ G

as a productg = gz · k. The matrixk ∈ K is in the formk =
(
un 0
0 e−iψ

)
, whereun ∈ U(n)

and detun = eiψ ; the matrixgz is hyperbolic where the entries depend only onz = g(0),
and it represents the projection on the symmetric spaceG/K, and by [8, III.2.7],

d = e−iψ√−〈z, z〉 . (25)

4.5. The complex structure.Recall [18, Ch. 9] that the canonical complex structure on
Bn is a tensor fieldJ : z → Jz, where for eachz ∈ Bn, Jz is an automorphism of the
tangent spaceTz such thatJ 2

z = −I (I denotes the identity map ofTz). In local coordinates
it is given by

Jz

(
∂

∂xj
(z)

)
= ∂

∂yj
(z), Jz

(
∂

∂yj
(z)

)
= − ∂

∂xj
(z).

RestrictingJ to T0(B
n) = p we obtain an automorphismJ0 : p → p such thatJ 2

0X = −X
for all X ∈ p. SinceG is semisimple, there exists an elementZ0 ∈ Z(k) such that
J0 = adp(Z0) andk = {X ∈ g | [Z0,X] = 0} [18, Ch. 11, Theorem 9.6]. We have

Z0 =
( i
n+11n 0

0 − ni
n+1

)
,

and

J0

((
0n η
tη 0

))
=

(
0n iη

−itη 0

)
for all

(
0n η
tη 0

)
∈ p.

For eachz ∈ Bn the automorphismJz can be extended uniquely to a complex linear
mapping of the complexificationT cz of Tz onto itself, also denoted byJz, and satisfying
(Jz)

2 = −I . The eigenvalues ofJz are thereforei and−i. Forz = 0 we haveT c0 (B
n) = pc

and the corresponding eigenspaces are

p+ = {Z ∈ pc | J (Z) = iZ} and p− = {Z ∈ pc | J (Z) = −iZ}.
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Then

p+ = {X − iJ (X) | X ∈ p}, p− = {X + iJ (X) | X ∈ p}, (26)

andpc can be written as a direct sum of complex vector spaces

pc = p+ ⊕ p−.

Thus by (26) and (23)

p+ =
{(

0n η

0 0

) ∣∣∣∣ η ∈ C
n

}

and

p− =
{(

0n 0
t η 0

) ∣∣∣∣ η ∈ C
n

}
.

Any g ∈ G can also be decomposed according to Harish-Chandra [3, p. 688,10, Ch. VIII,
§7] as

g = g+ · g0 · g−,

whereg+ = expp+, p+ ∈ p+, g− = expp−, p− ∈ p−, andg0 ∈ Kc, the complex-
ification ofK. For

g =



a11 · · · a1n b1

· · · · · · · · · · · ·
an1 · · · ann bn

c1 · · · cn d




we obtain

g+ =
(

1n z

0 1

)
and g− =

(
1n 0
tw 1

)
, (27)

where

z =


b1
d

· · ·
bn
d


 and w =



c1
d

· · ·
cn
d


 .

Sincez = g(0) we see that the Harish-Chandra map

χ : G → p+,

given by

g 7→ logg+,

is exactly the mapπ of (24) and the bounded domainχ(G) ⊂ p+ is the unit ballBn ⊂ Cn.

Remark.Notice that in (27)w 6= z.

The Bergman metric onBn introduced in §4.1 is Hermitian, i.e. it is invariant by the
complex structureJ , and thus defines a Hermitian inner product on each tangent space
Tz(B

n).
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5. The frame flow
5.1. Geometric interpretation. Let 0 be a lattice inG and

D =

0n−1 0 0

0 0 1
0 1 0


 ∈ p.

The corresponding maximal split Abelian subgroup ofG

A =

at =


1n−1 0 0

0 cosht sinht
0 sinht cosht




∣∣∣∣∣∣ t ∈ R


 (28)

projects to the ‘standard geodesic’

I =



at (0) =




0
· · ·
0

tanht
1




∣∣∣∣∣∣∣∣∣∣∣
t ∈ R



.

The subgroup ofK which commutes withA is

W =




un−1 0 0

0 e−iψ 0
0 0 e−iψ




∣∣∣∣∣∣ ψ ∈ R/2πZ,detun−1 = e2iψ


 .

As has been explained in §2.1, acting by right multiplications onG, A defines
a homogeneous flow̃ϕt on 0\G, which is called theframe flow in this case. The
terminology comes from the fact that the groupPU(n,1)may be identified with a principal
U(n)-bundle overBn. A fiber at the pointz ∈ Bn geometrically represents the space
of n-frames: unitary frames of tangent vectors atz with respect to the Hermitian inner
product. Geometrically, the flow̃ϕt acts as follows: along the geodesic it leaves invariant,
it acts by hyperbolic isometries whose differentials move the last vector along the geodesic
at constant speed (this represents the projection ofϕ̃t to the geodesic flowϕt on0\G/W ),
and the remaining vectors of the frame by parallel translation [18, Ch. 9, Theorem 3.2].
Notice that the distance with respect to the Bergman metric between two points differs
from the parametert of the geodesic flow on the corresponding geodesic by a factor of
two: d(z, ϕt (z)) = 2t .

5.2. Loxodromic elements inSU(n,1). As has been explained in the general setup in
§2.1, a loxodromic elementγ0 has axis inBn, and two fixed points in the boundary∂Bn,
oneattractingand onerepelling. The fixed points correspond to the null eigenvectors of
γ0 with eigenvaluesλ and λ̄−1, and the remainingn − 1 eigenvectors are positive with
eigenvalues of absolute value 1.

As we have pointed out earlier, the automorphisms ofBn are in fact elements of
PU(n,1). Therefore, each loxodromic automorphism may also be represented by an
element ofU(n,1) with a real eigenvalue not equal to 1. Sometimes it is possible to
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find such an element inSU(n,1). Eigenvectors (inCn+1) and hence fixed points (on the
boundary∂Bn) do not depend on the choice of a representative inU(n,1). The following
proposition gives an explicit formula for the transformationT conjugating a loxodromic
element inU(n,1) to an ‘almost hyperbolic’ element with a nice fundamental domain.
This formula will be used in §7.

PROPOSITION10. Let γ0 be a loxodromic element inU(n,1) with eigenvectors
V1, . . . , Vn−1,X, Y and corresponding eigenvaluesτ1, . . . , τn−1, λ, λ

−1, |τj | = 1, j =
1, . . . , n−1, λ ∈ R, |λ| > 1. LetVj , j = 1, . . . , n−1, be normalized so that〈Vj , Vj 〉 = 1
andV1 be chosen so that the matrix

T :=
(
V1 · · · Vn−1

X
〈X,Y 〉 + Y

2
X

〈X,Y 〉 − Y
2

)
has real positive determinant. LetF0 be the Dirichlet fundamental domain for〈γ0〉
centered atT (0). Then
(1) T ∈ SU(n,1),
(2)

γ := T −1 · γ0 · T =




τ1 0 · · · · · · 0
· · · · · · · · · · · · · · ·
0 · · · τn−1 0 0

0 · · · 0 λ2+1
2λ

λ2−1
2λ

0 · · · 0 λ2−1
2λ

λ2+1
2λ




has null eigenvectors

X0 =




0
· · ·
0
1
1


 and Y0 =




0
· · ·
0

−1
1


,

(3) the fundamental domainT −1(F0) of 〈γ 〉 is bounded by two hypersurfaces:

H1 =
{
w

∣∣∣∣∣
∣∣∣∣∣λ

2 − 1

2λ
wn − λ2 + 1

2λ

∣∣∣∣∣ = 1

}

and

H2 =
{
w

∣∣∣∣∣
∣∣∣∣∣λ

2 − 1

2λ
wn + λ2 + 1

2λ

∣∣∣∣∣ = 1

}
.

6. Automorphic forms on the complex hyperbolic space
6.1. Automorphy factor. For anyg ∈ G, along with the Jacobian matrixJ (g, z) and its
determinant, the function

j (g, z) = (detJ (g, z))1/(n+1) = (c1z1 + · · · + cnzn + d)−1, (29)

is a 1-cocycle. Takingµ(g, z) = j (g, z)(n+1)κ for a half-integerκ ≥ 1 such that(n+1)κ is
an integer as anautomorphy factor, we see that fork ∈ K, ρ(k) = µ(k,0) = ei(n+1)κψ is



Spanning sets 1089

a one-dimensional representation ofK. The operatorf |γ defined in (5) is well-defined on
PU(n,1). Thus we obtain a space of holomorphic cusp forms of weight(n+ 1)κ denoted
classically byS(n+1)κ (0) (see, e.g., [23]).

Using the formula (25) we see that

µ(g,0) = d−(n+1)κ =
(
eiψ

√−〈z, z〉
)(n+1)κ

,

and therefore the inner product is given by the formula

(f1, f2) =
∫
0\Hn

C

f1f2(−〈z, z〉)(n+1)κ dV . (30)

6.2. Lift to the group. It is convenient to choose the following local (partial) coordinates
(z, η, ζ ) onSU(n,1):

z(g) = g(0) ∈ Bn, η(g) = J (g,0) · ι ∈ Sz(Bn), (31)

whereι is the unit tangent vector at zero to the ‘standard geodesic’I, introduced in §2.1,
and

ζ(g) = j (g,0) = d−1 = √
(−〈z, z〉)eiψ 6= 0. (32)

It is easy to check that the left multiplication byg′ ∈ G corresponds to the action
on z ∈ Bn by a biholomorphic transformationg′(z) (20), on η ∈ Sz(B

n) by the
Jacobian matrixJ (g′, z) (21), and onζ by j (g′, z) (29). The lift of the automorphic form
f ∈ S(n+1)κ (0) toG (6) has a nice expression in these coordinates:

f̃ (g) = f (z)ζ (n+1)κ.

6.3. Construction of relative Poincaré series associated to closed geodesics.The
following construction associates a cusp form to each loxodromic element

γ0 =



a11 · · · a1n b1

· · · · · · · · · · · ·
an1 · · · ann bn

c1 · · · cn d


 ∈ 0.

As a loxodromic automorphism,γ0 has two fixed points on the boundary∂Bn, X andY :
〈X,X〉 = 0 and〈Y, Y 〉 = 0,X repelling andY attracting. ThenQγ0(z) = 〈z,X〉〈z, Y 〉 6= 0
on the closure ofBn except for the pointsX andY , and transforms underγ0 as follows:

Qγ0(γ0z) = j (γ0, z)
2Qγ0(z) = (c1z1 + · · · + cnzn + d)−2Qγ0(z).

Let Kn = {κ ≥ 1 | κ ∈ 1
2Z, (n + 1)κ ∈ Z}. For the rest of the paper we shall

assume thatκ ∈ Kn. The functionq(z) = 1/Q(n+1)κ
γ0 (z) is an automorphic form of

typeµ(g, z) = j (g, z)2(n+1)κ for the subgroup00 = 〈γ0〉, and it satisfies condition (1) of
Theorem 5 since it is holomorphic. Condition (2) is also satisfied. To see that we write,
using (18),∫

00\Bn
|q(z)|(−〈z, z〉)(n+1)κ dV = 4n

∫
F0

(−〈z, z〉)(n+1)(κ−1)

|〈z,X〉〈z, Y 〉|(n+1)κ
dVE, (33)
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where F0 is a Dirichlet fundamental domain for00. Since the denominator of the
expression in the second integral is equal to zero only atz = X andz = Y , the expression
represents a continuous function onF0. SinceF0 is a bounded domain, the integral is
finite. Thus for anyκ ∈ Kn we produce a relative Poincar´e series

2γ0,κ (z) =
∑

γ∈00\0
(q|γ )(z) (34)

of weight 2(n+ 1)κ which belongs toL1(0\G), and, by Satake’s theorem, is a cusp form.
If γ1 is conjugate toγ0 in 0, then it is easy to see that2γ1,κ (z) = 2γ0,κ (z). If two primitive
loxodromic elementsγ0, γ1 ∈ 0 have the same axis, thenγ1 = γ0w, wherew belongs to
a compact subgroup ofK conjugate toW . It follows from discreteness of0 that if n ≥ 2,
finitely many elements in0 may have the same axis. It is a consequence of the period
formula (Corollary 13) that their relative Poincar´e series coincide.

7. The period formula
THEOREM 11. For anyf ∈ S2(n+1)κ (0) and any loxodromic elementγ0 ∈ 0,

(f,2γ0,κ ) = |α|−2(n+1)κC

∫ γ0z0

z0

f (z)Qγ0,κ (z)
(n+1)κ dt.

Herez0 is any point on the axis ofγ0, the integration is over the axis ofγ0 in Bn, t is the
parameter of the geodesic flow,α = −〈X,Y 〉/2, and

C = (2(n+ 1)κ − n− 1)!
(((n+ 1)κ − 1)!)2 πn22(n+1)(1−κ)−1

is a constant.

Proof. Let
I := (f,2γ0,κ ).

Since the series (34) converges absolutely, we can interchange summation and integration
and, using the standard ‘Rankin–Selberg method’ (see [25, p. 246]), obtain

I =
∫
F=0\Bn

f (z)
∑

γ∈00\0
(q|γ )(z)(−〈z, z〉)2(n+1)κ dV

=
∑

γ∈00\0

∫
F

f (z)(q|γ )(z)(−〈z, z〉)2(n+1)κ dV

=
∑

γ∈00\0

∫
γF

f (z)q(z)(−〈z, z〉)2(n+1)κ dV

=
∫
F0

f (z)
(−〈z, z〉)2(n+1)κ

(〈X, z〉〈Y, z〉)(n+1)κ
dV,

whereF0 is the fundamental domain for〈γ0〉 of Proposition 10.
We now make the change of variablesw = T −1z, whereT is as in Proposition 10,

mapping the ‘standard geodesic’I into the axis ofγ0. The following lemma is easily
checked.
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LEMMA 12. 〈z,X〉〈z, Y 〉 = ᾱj (T ,w)2(1 −w2
n), whereα = −〈X,Y 〉/2.

According to (18) we have

dV = (2i)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(−〈z, z〉)(n+1)
.

Let us denotedVi = dwi ∧ dw̄i ∧ · · · ∧ dwn ∧ dw̄n. Then

I = (2i)n
∫
F0

f (z)
(−〈z, z〉)2(n+1)κ

(〈X, z〉〈Y, z〉)(n+1)κ
· dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(−〈z, z〉)(n+1)

= (2i)n
∫
T −1F0

f (Tw)
(−〈T w, T w〉)2(n+1)κ

(〈X, T w〉〈Y, T w〉)(n+1)κ
· dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n

(−〈w,w〉)(n+1)

= (2i)nα−(n+1)κ
∫
T −1F0

f (T w)
(−〈w,w〉)2(n+1)κ |j (T ,w)|4(n+1)κ

(1 − w̄2
n)
(n+1)κj (T ,w)

2(n+1)κ
· dV1

(−〈w,w〉)(n+1)

= (2i)nα−(n+1)κ
∫
T −1F0

f (T w)
(−〈w,w〉)2(n+1)κ−(n+1)j (T ,w)2(n+1)κ

(1 − w̄2
n)
(n+1)κ

dV1.

Further calculations can be divided onto three parts:

Step 1.Show that

I = − 2πi

2(n+ 1)κ − (n+ 1)+ 1
(2i)nα−(n+1)κ

×
∫
T −1F0∩{w|w1=0}

f (Tw)
(−〈w,w〉)2(n+1)κ−(n+1)+1

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dV2.

Step 2.Show that

I = 2niα−(n+1)κ (2(n+ 1)κ − n− 1)!
(2(n+ 1)κ − 2)! (2π)n−1

×
∫
T −1F0∩{w|w1=···=wn−1=0}

f (T w)
(−〈w,w〉)2(n+1)κ−2

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dVn.

Step 3.Show that

I = |α|−2(n+1)κC

∫ γ0z0

z0

f (z)(〈z,X〉〈z, Y 〉)(n+1)κ dt.

Step 1. γ = T −1γ0T leaves invariant{w | w1 = 0}. The fundamental domainT −1F0

for γ over which we take the integral can be described asD1 = T −1F0∩{w | w1 = 0} with
the disc{w | w2 = constant, . . . , wn = constant} of radius(1 − w2w̄2 − · · · − wnw̄n)

1/2

‘attached’ at every point(0, w2, . . . , wn) ∈ D1 (this disc has only one common point with
D1). Change coordinates on the disc{w | w2 = constant, . . . , wn = constant}:

(Rew1, Imw1) → (R,2),

w1 = (1 −w2w̄2 − · · · − wnw̄n)
1/2 Rei2, 0 ≤ R ≤ 1, 0 ≤ 2 < 2π.
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Then on the disc{w | w2 = constant, . . . , wn = constant},
dw1 ∧ dw̄1 = −2i d(Rew1) ∧ d(Imw1)

= −2i

∣∣∣∣∂(Rew1, Imw1)

∂(R,2)

∣∣∣∣ dR ∧ d2
= −2i(1 −w2w̄2 − · · · −wnw̄n)R dR ∧ d2,

d2 = dw1

iw1

∣∣∣∣
R=constant

.

We have

−〈w,w〉 = (1 −w2w̄2 − · · · − wnw̄n)(1 − R2),

−〈w,w〉|D1 = 1 −w2w̄2 − · · · −wnw̄n,

so

I = −2i(2i)nα−(n+1)κ
∫ 1

0
R(1 − R2)2(n+1)κ−(n+1) dR

1

i

∮
R=constant

F(w1)

w1
dw1,

where

F(w1) =
∫
D1

f (Tw)
(1 −w2w̄2 − · · · −wnw̄n)

2(n+1)κ−(n+1)+1

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dV2

is a holomorphic function ofw1.
By the Cauchy integral formula∮

R=constant

F(w1)

w1
dw1 = 2πiF (0),

hence this integral does not depend on the value ofR and, taking into account the fact that∫ 1

0
R(1 − R2)2(n+1)κ−(n+1) dR = 1

2(2(n+ 1)κ − (n+ 1)+ 1)
,

we get

I = −(2i)n+1α−(n+1)κ 1

i
2πi

1

2(2(n+ 1)κ − (n+ 1)+ 1)

×
∫
D1

f (Tw)
(1 −w2w̄2 − · · · − wnw̄n)

2(n+1)κ−(n+1)+1

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dV2

= − 2πi

2(n+ 1)κ − (n+ 1)+ 1
(2i)nα−(n+1)κ

×
∫
D1

f (Tw)
(−〈w,w〉)2(n+1)κ−(n+1)+1

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dV2.

Step 2. DenoteDp = T −1F0 ∩ {w | w1 = · · · = wp = 0}. γ leaves invariant
{w | w1 = · · · = wp = 0} for any 1≤ p ≤ n − 1. Repeat Step 1n − 2 times more (i.e.
totally we perform Step 1n− 1 times). It is proved by induction that

I = (2i)nα−(n+1)κ (−2πi)p
1

2(n+ 1)κ − (n+ 1)+ 1
· · · 1

2(n+ 1)κ − (n+ 1)+ p

×
∫
Dp

f (T w)
(−〈w,w〉)2(n+1)κ−(n+1)+p

(1 − w̄2
n)
(n+1)κ j (T ,w)2(n+1)κ dVp+1,



Spanning sets 1093

and the stepp − 1 → p essentially repeats the argument in Step 1.
Forp = n− 1 we obtain

I = (2i)nα−(n+1)κ (−2πi)n−1 1

2(n+ 1)κ − (n+ 1)+ 1
· · · 1

2(n+ 1)κ − (n+ 1)+ n− 1

×
∫
Dn−1

f (T w)
(−〈w,w〉)2(n+1)κ−(n+1)+n−1

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dwn ∧ dw̄n

= 2niα−(n+1)κ (2(n+ 1)κ − n− 1)!
(2(n+ 1)κ − 2)! (2π)n−1

×
∫
Dn−1

f (T w)
(−〈w,w〉)2(n+1)κ−2

(1 − w̄2
n)
(n+1)κ

j (T ,w)2(n+1)κ dwn ∧ dw̄n.

Step 3. The last integral is overDn−1 = T −1F0 ∩ {w | w1 = 0 = · · · = wn−1 = 0},
the fundamental domain for a ‘standard hyperbolic element’

γ =

λ2+1

2λ
λ2−1

2λ

λ2−1
2λ

λ2+1
2λ




of SU(1,1) acting on the unit disc inC. The change of coordinates

(Rewn, Imwn) → (r, φ), (r > 0, 0< φ < π),

where

wn = u− i

u+ i
, u = reiφ,

maps the unit disc to the upper half-plane with polar coordinates(r, φ), so thatDn−1 is
mapped onto the upper half-annulus

{|λ|−1 < r < |λ|,0< φ < π}.
Using formulas

dwn ∧ dw̄n = − 2i
4r dr ∧ dφ
|reiφ + i|4 ,

−〈w,w〉 =1 −wnw̄n = 4r sinφ

|reiφ + i|2 ,

1 − w̄2
n = − 4ire−iφ

(re−iφ − i)2
,

1 −w2
n = 4ireiφ

(reiφ + i)2
,

we obtain

I = 2n−1α−(n+1)κ (2(n+ 1)κ − n− 1)!
(2(n+ 1)κ − 2)! (2π)n−1

∫ π

0
(sinφ)2(n+1)κ−2 dφ

×
∫
φ=constant,|λ|−1≤r≤|λ|

f (T w)(1 − w2
n)
(n+1)κj (T ,w)2(n+1)κ 1

r
dr.
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But

dwn|φ=constant= ∂wn

∂r
dr = 2ieiφ

(reiφ + i)2
dr,

hence
dr

r

∣∣∣∣
φ=constant

= (reiφ + i)2

2ieiφr
dwn|φ=constant= 2

1

1 −w2
n

dwn|φ=constant,

and we have

I = 2n−1α−(n+1)κ (2(n+ 1)κ − n− 1)!
(2(n+ 1)κ − 2)! (2π)n−1

∫ π

0
(sinφ)2(n+1)κ−2 dφ

× 2
∫
φ=constant

f (T w)(1 −w2
n)
(n+1)κj (T ,w)2(n+1)κ dwn

1 −w2
n

.

The last integral does not depend onφ as the integral of aγ -invariant holomorphic
function ofwn. For the same reason it does not depend on the choice of the pointw0 and
the path fromw0 to γw0 in Dn−1. Hence we may takew0, γw0 ∈ I, and since onI
dt = dwn/(1 −w2

n), the last integral can be rewritten as∫ γw0

w0

f (T w)(1 −w2
n)
(n+1)κj (T ,w)2(n+1)κ dt,

where the integration is over a segment ofI.
Using Lemma 12 again, we go back to the integral over the axis ofγ0, and obtain

I = 2n|α|−2(n+1)κ (2(n+ 1)κ − n− 1)!
(2(n+ 1)κ − 2)! (2π)n−1

×
∫ π

0
(sinφ)2(n+1)κ−2 dφ

∫ γ0z0

z0

f (z)(〈z,X〉〈z, Y 〉)(n+1)κ dt.

Finally, we obtain

(f,2γ0,κ ) = |α|−2(n+1)κC

∫ γ0z0

z0

f (z)(〈z,X〉〈z, Y 〉)(n+1)κ dt (35)

with

C = (2(n+ 1)κ − n− 1)!
(((n+ 1)κ − 1)!)2 πn22(n+1)(1−κ)−1. 2

The following corollary is immediate from Theorem 11.

COROLLARY 13. Let γ1, γ0 ∈ 0 be two primitive loxodromic elements having the same
axis. Then2γ0,κ = 2γ1,κ .

The integral (35) is well-defined and is called theperiod off over the closed geodesic
[g0]. The reason for this definition is the following result.

THEOREM 14. Let f̃ be the lift of the cusp formf (z) ∈ S2(n+1)κ (0) toG. Then for any
lift [γ0]w of the closed geodesic[γ0] toG we have

(f,2γ0,κ ) = e−2(n+1)κiψα−(n+1)κC

∫
[γ0]w

f̃ dt.

Herew =
(
un−1 0 0

0 e−iψ 0
0 0 e−iψ

)
∈ W with detun−1 = e2iψ , andC is the constant from

Theorem 11.
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Proof. We make a change of variablesg used in §2.1 which maps the ‘horizontal’ geodesic
to the axis ofγ0 in such a way thatg(0) = z0. According to §2.1 all lifts of the segment
of the geodesic[z0, γ0z0] are given by{gwat | w ∈ W,0 ≤ t ≤ s}, and all lifts of the
corresponding segment of the ‘horizontal’ geodesic by{wat | w ∈ W,0 ≤ t ≤ s}. Using
local coordinates (31) onG we obtain∫ γ0z0

z0

f (z)(〈z,X〉〈z, Y 〉)(n+1)κ dt

= ᾱ(n+1)κ
∫ g−1γ0g(0)

0
f (gx)(1 − x2

n)
(n+1)κj (g, x)2(n+1)κ dt

= ᾱ(n+1)κ
∫

[g−1γ0g]w
f (gx)(e−iψζx)2(n+1)κj (g, x)2(n+1)κ dt

= ᾱ(n+1)κe−2(n+1)κiψ
∫

[γ0]w
f (z)ζ 2(n+1)κ

z dt.

The last two integrals are inG over the lifts[g−1γ0g]w and[γ0]w, andx, ζx andz, ζz are
evaluated at the corresponding value of the parametert : xn = (0, . . . , xn(t)) = ϕt(0),
xn(t) = tanht , ζx = eiψ/cosht . We used the cocycle identity to obtain the last equality:

ζz = j (g, x)ζx .

The required formula now follows from Theorem 11. Notice that sincef̃ = f (z)ζ
2(n+1)κ
z

is 0-invariant, the integral is in0\G. 2

8. Cohomological equation for cusp forms: the vanishing result
8.1. Three-dimensional subalgebra.Now we considerL2(0\G) with the inner product
(7). The infinitesimal generators of the frame flow (28) and the one-parameter subgroup

mψ =




1n−1 0 0

0 eiψ 0
0 0 e−iψ




∣∣∣∣∣∣ ψ ∈ R/2πZ


 ⊂ K,

belong to the Lie algebrag = su(n,1). The corresponding left-invariant differential
operators

DF(g) = d

dt
F (g · at )|t=0 and

∂

∂ψ
F(g) = ∂

∂ψ
F(g ·mψ)|ψ=0

are defined on a dense set of functions inL2(0\G), differentiable along the orbits of the
corresponding flows, and are given by the matrices

D =

0n−1 0 0

0 0 1
0 1 0


 ,

∂

∂ψ
=


0n−1 0 0

0 i 0
0 0 −i


 .

Complemented by the third differential operator

D′ =

0n−1 0 0

0 0 i

0 −i 0


 ,
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they generate a three-dimensional Lie subalgebra ofg with the commutation relations[
∂

∂ψ
,D

]
= 2D′,

[
∂

∂ψ
,D′

]
= −2D, [D,D′] = −2

∂

∂ψ
.

Then

D+ = D − iD′

2
, D− = D + iD′

2
and 9 = −i ∂

∂ψ

belong to the complexification ofg, gc = sl(n+1,C), and have the following commutation
relations:

[9,D+] = 2D+, [9,D−] = −2D−, [D+,D−] = 9. (36)

They generate a three-dimensional real Lie algebra isomorphic tosl(2,R). The properties
of these operators are exactly the same as in the casen = 1 (cf. [9, §3;13, §2]).

PROPOSITION15. The differential operatorD is skew-self-adjoint:D∗ = −D, or
equivalently,(DF,H) = −(F,DH) for F,H ∈ L2(0\G) ∩ domainD.

A standard Fourier analysis argument shows that the spaceL2(0\G) can be
decomposed into a direct sum of orthogonal subspaces

⊕∞
−∞Hm such that

Hm = {F ∈ L2(0\G) | 9F = mF }. (37)

Notice that the lift of a cusp formf ∈ S2(n+1)κ (0) to the groupG belongs to the space
H2(n+1)κ .

PROPOSITION16.
(1) If F ∈ Hm, thenD+F ∈ Hm+2, andD−F ∈ Hm−2;
(2) (D+)∗ = −D−; (D−)∗ = −D+.

8.2. Proof of Theorem 1. Suppose there is a cusp formf ∈ S2(n+1)κ (0), such that
(f,2γ0,κ ) = 0 for all loxodromic elementsγ0 ∈ 0. First we show thatf (z)ζ 2(n+1)κ ∈
BL(0\G). If 0\G is compact, it follows from Remarks 1 and 2 following Definition 3.
Alternatively,0\G/K has a finite number of cusps [6], and it is sufficient to show that
f (z) and its first derivatives vanish at each cuspσ .

Let R be a partial Cayley transform [22, Ch. 4] mapping biholomorphically a Siegel
domain

S = {(w, u) = (w, u1, . . . , un−1) ∈ C
n | Imw − |u1|2 − · · · − |un−1|2 > 0}

to Bn = {∑n
i=1 |zi |2 < 1

}
in such a way thatR(∞) = σ . By [6] 0σ = {γ ∈

0 | γ (σ) = σ } 6= ∅. ThenR−10σR contains ‘parallel translations’Tm : (w, u) →
(w + m,u), (m ∈ Z), with j (Tm, (w, u)) = 1, and8(w, u) = (f |R)(w, u) =
f (R(w, u))j (R, (w, u))2(n+1)κ is invariant underTm: 8(w + m,u) = 8(w, u). Then
8 has a Fourier–Jacobi expansion [22, Ch. 3, §5,2, Ch. 11]

8(w, u) =
∑
m∈Z

ψm(u)e
2πimw,

and sincef is a cusp form, by Satake’s theorem [2, Ch. 11, §5]ψm(u) = 0 form ≤ 0, and
the claim follows.
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By Theorem 14 the functionf (z)ζ 2(n+1)κ satisfies Theorem 8, and its application
guarantees us existence of a Lipschitz functionF : 0\G → C such that

DF = f (z)ζ 2(n+1)κ. (38)

LEMMA 17. LetF be the function obtained from the Theorem 8 forf (z)ζ 2(n+1)κ , where
f (z) ∈ S2(n+1)κ (0). ThenF ∈ L2(0\G).
Proof. The uniform boundedness of|F | on0\G of finite volume would imply the required
result. If0\G is compact, it follows from the Lipschitz condition. If0\G is not compact,
it is sufficient to show that|F | is bounded at each cuspσ . The proof is similar to the proof
for Fuchsian groups in [13]. It is based on an application of a partial Cayley transformR
described above. LetI be the geodesic inS given by Rew = 0, u = 0. ThenR(I) is
the geodesic in0\Bn going to the cuspσ . On I we have|8(w, u)| = O(e−2πy), where
y = Imw. Then onR(I), considered as an orbit ofϕ̃t , |F(ϕ̃s(g))−F(g)| may be estimated
using (38) for anys > 0 by the integral

∫ ∞
y0

|8(w, u)|y(n+1)κ dy/y overI , which is finite.
The finiteness of the volume implies that for anyε > 0 there exists a neighborhood of
the cuspU(σ) such thatd((w, u), R(I)) < ε, and the uniform boundedness of|F | now
follows from the Lipschitz condition. 2

We decomposeF according to (37) and rewrite (38) as the following system:

D−F2(n+1)κ+2 + D+F2(n+1)κ−2 = f (z)ζ 2(n+1)κ

D−Fj+2 + D+Fj−2 = 0, for all j 6= 2(n+ 1)κ.
(39)

The argument of Guillemin and Kazhdan [9, Theorem 3.6] for negatively curved
surfaces is applicable to this situation since it depends only on the commutation relations
(36) and the fact which immediately follows from it: forFm ∈ Hm

‖D+Fm‖2 = ‖D−Fm‖2 +m‖Fm‖2.

PROPOSITION18. LetF be a solution of (39). ThenFj = 0 for j ≥ 2(n+ 1)κ .

ThusF2(n+1)κ+2 = 0 and the first equation of (39) has the form

D+F2(n+1)κ−2 = f (z)ζ 2(n+1)κ.

PROPOSITION19. If f̃ (g) = f (z)ζ 2(n+1)κ is the lift of a holomorphic cusp formf ∈
S2(n+1)κ toG, thenD−f (z)ζ 2(n+1)κ = 0.

Proof. It follows immediately from the fact that has been, apparently, first pointed out in
[7] (see also [1, §5,3, p. 203]) that for anyY ∈ p−

Y f̃ (g) = j (g,0)2(n+1)κ (Ỹ f )(z).

HereỸ is the linear combination of the partial derivatives∂/∂zj wherezj are coordinates
on the bounded domainBn andz = g(0) = (z1, . . . , zn). ForY = D− ∈ p− this can be
easily checked by a direct differentiation along the orbit of the frame flowϕ̃t (g) using the
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decompositiong = g0 · mψ corresponding to the local coordinates (31) with coefficients
of

g0 =



a11 · · · a1n b1

· · · · · · · · · · · ·
an1 · · · ann bn

c1 · · · cn d




independent onψ. Then

D(f (z, z)ζm) =
( ∑

(ajnd − cnbj )
∂f

∂zj
−mcn df (z, z)

)
ζm+2

+
( ∑ (ajnd − cnbj )

(dd)2

∂f

∂zj

)
ζm−2.

Sincef (z) is holomorphic we have

D−f (z)ζ 2(n+1)κ =
( ∑ (ajnd − cnbj )

(dd)2

∂f

∂zj

)
ζ 2(n+1)κ−2 = 0. 2

The end of the proof goes exactly as in [13]. By Proposition 19

D−D+F2(n+1)κ−2 = D−f (z)ζ 2(n+1)κ = 0.

Therefore

0 = (F2(n+1)κ−2,D
−D+F2(n+1)κ−2) = −‖D+F2(n+1)κ−2‖2,

hencef (z)ζ 2(n+1)κ−2 = D+F2(n+1)κ−2 = 0. Sinceζ 6= 0,f (z) = 0. 2
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